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Abstract

The widespread adoption of Artificial Intelligence in everyday activities highlights
a growing and urgent need for trustworthiness. Designing trustworthy Al systems
requires addressing key technical challenges, including ensuring data privacy and
model explainability. Federated Learning (FL) is a widely adopted paradigm to
preserve data privacy in collaborative learning scenarios, while post-hoc methods
are commonly applied to enhance the explainability of opaque Al-based models.
In this paper, we propose a novel approach, called Federated SHAP, to simulta-
neously address privacy and explainability. Specifically, we leverage the SHapley
Additive exPlanations (SHAP) method to provide post-hoc explanations of Neu-
ral Networks trained through FL. SHAP relies on a representative background
dataset; however, constructing such a dataset in the FL setting is particularly
challenging since raw data distributed across multiple clients cannot be shared
directly due to strict privacy requirements. To address this challenge, we pro-
pose two tailored strategies depending on the data type: for tabular data, we



adopt a Federated Fuzzy C-Means clustering algorithm to collaboratively summa-
rize the distributed datasets into a suitable background dataset; for image data,
we introduce a Federated Generative Adversarial Network (GAN) to synthesize
representative background instances. A comprehensive experimental evaluation
demonstrates the effectiveness and robustness of our proposed approaches, com-
paring them against several baseline and alternative strategies in terms of both
representativeness and quality of generated explanations. Compared to baselines
employing randomly generated representative background datasets, our approach
reduces the discrepancy of SHAP explanations by up to three times on tabular
data and two times on image data (depending on the test case involved), when
measured against the centralized SHAP values computed using the full training
set as background dataset.

Keywords: Federated Learning, Explainable Artificial Intelligence, SHAP, Fuzzy
Clustering, Fuzzy C-Means, GAN

1 Introduction

The rapid and widespread adoption of Artificial Intelligence (AI) and Machine Learn-
ing (ML) systems has raised significant concerns regarding the trustworthiness of their
outcomes. In response, various initiatives have been undertaken to promote trust,
spanning from ethical frameworks to the development of new laws and regulations.
Notably, in 2024, the European Union approved the world’s first comprehensive Al
legislation: the AI Act!. Initially proposed in 2021, the Act builds upon earlier efforts
such as the EU’s Ethics Guidelines for Trustworthy AI [1]. These documents reflect
the EU’s commitment to fostering the responsible development and use of Al for
the benefit of society. In this context, trustworthy Al is defined through three key
dimensions: lawfulness, ethical alignment, and technical robustness. According to the
guidelines, Al systems must meet several essential requirements, among them, privacy,
data governance, and transparency are particularly critical, especially when Al-driven
decisions have significant implications for individuals, such as in healthcare or security
applications.

Data privacy represents a critical concern in ML, primarily due to the high data
demand for model training. To address privacy issues, in 2016, Google introduced a
decentralized learning paradigm named Federated Learning (FL) [2]. FL allows the
collaborative training of a global ML model without requiring participants to share
data. In practice, each party (client) locally trains a model on its data and con-
tributes model updates, rather than the data itself, to collaboratively build a shared
global model. The FL paradigm can manage horizontally partitioned data (clients
have distinct instances but identical features), vertically partitioned data (clients have
identical instances but different features), or hybrid scenarios. Neural Networks (NN)
are particularly suited for training in a FL setting; however, they are often regarded
as opaque and difficult to interpret.

Lhttps://artificialintelligenceact.eu/the-act/, accessed March 2024
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Alongside privacy, transparency is an equally critical requirement for trustworthi-
ness. Transparency, as described in [1], includes traceability, communication clarity,
and explainability. Specifically, explainability refers to “the ability to explain the
technical processes of an AI system” [1] and is the central focus of Explainable AI
(XATI) [3, 4]. Explainability can be pursued through interpretable-by-design models or
via post-hoc methods that provide explanations for otherwise opaque models, such as
NN and ensemble models.

One of the most popular post-hoc explanation techniques is SHapley Additive
exPlanations (SHAP) [5], which explains individual AI model predictions by quan-
tifying input feature importance using Shapley values from game theory [6]. SHAP
requires three key elements: the trained model, the instance to explain, and a repre-
sentative “background (reference) dataset” drawn from the same distribution as the
original training data. The background dataset plays a crucial role in SHAP. In fact,
feature attributions are computed by evaluating model predictions across possible
subsets of input features, and the values of missing features are replaced using sam-
ples from the background dataset. This dataset acts as a reference distribution and
is essential to simulate realistic feature combinations, making it a key component for
generating accurate and meaningful explanations. Usually, the training dataset itself
serves as the background, possibly undersampled to reduce SHAP’s computational
complexity.

The design of an appropriate background dataset becomes even more challenging
in FL scenarios, where explanations must simultaneously satisfy privacy, consistency,
and accuracy requirements. Due to privacy constraints inherent in FL, the background
dataset cannot consist of the scattered local datasets, as local data cannot be central-
ized. A naive solution would be to use local data separately for each client; however,
this approach exhibits several shortcomings. First, local datasets typically have hetero-
geneous distributions, which may lead to inconsistent explanations among clients for
identical predictions [7], thus undermining explanation reliability. Second, this solu-
tion could also lead to privacy violations, particularly in realistic scenarios where the
instance to be explained resides either on a single client or on an external client that
did not participate in the federated training. Therefore, such an approach may not be
feasible in practice. In general, explanations generated in an FL setting should ideally
approximate as closely as possible those obtained in a centralized scenario.

This work builds upon recent advances at the intersection of FL and XAI (labeled
as Fed-XAI [8]), combining their strengths to develop trustworthy AI solutions that
simultaneously ensure privacy and explainability. Specifically, our research extends
our previous work [9], in which we proposed Federated SHAP, an approach for gen-
erating representative background datasets in FL settings using a Federated Fuzzy
C-Means clustering algorithm [10] tailored for tabular data. While our previous con-
tribution demonstrated promising results, it was limited by the exclusive focus on
tabular datasets and lacked extensive comparison with alternative baseline strategies.

To overcome these limitations, we have significantly extended the experimental
analysis for tabular data scenarios, introducing new datasets and developing additional
baseline methods, including a novel approach based on local differential privacy prin-
ciples [11]. Furthermore, recognizing the broader applicability of FL, we expanded our



Federated SHAP approach to the critical domain of image data, leveraging Federated
Generative Adversarial Networks (GANSs) [12] to collaboratively generate synthetic
yet representative background instances. This extension is particularly relevant, given
that computer vision represents one of the main application fields of FL [13]. This rel-
evance stems from the widespread distribution of image data across multiple clients,
particularly in sensitive fields such as healthcare, surveillance, and autonomous driv-
ing, where data sharing restrictions are stringent and collaboration among different
entities is often essential. The core technical contribution of this work is the proposal
of a unified framework that bridges explainability and privacy by enabling SHAP-
based explanations in FL. Specifically, we describe two modality-aware strategies for
constructing representative background datasets, namely FedFCM for tabular data
and FedGAN for images, thus making SHAP explanations feasible and reliable in
decentralized settings.

Through extensive experimental validation, encompassing diverse classification and
regression datasets, we demonstrate the effectiveness, privacy preservation, accuracy,
and consistency of our proposals compared to baseline and alternative strategies,
thereby confirming their suitability for practical deployment in trustworthy Al
scenarios.

The remainder of this paper is structured as follows. Section 2 discusses recent liter-
ature on FL approaches to XAI models, with particular emphasis on methods adopting
SHAP as a post-hoc explanation technique. Section 3 introduces the formal statement
of the addressed problem, followed by a detailed presentation of our Federated SHAP
approaches for tabular and image datasets. Section 4 outlines the experimental setup,
describes the datasets and models considered, and presents the baseline strategies
used to generate background datasets for comparison with our proposed approaches.
The experimental results and related discussions are presented in Section 5. Finally,
Section 6 provides concluding remarks and highlights possible future directions.

2 Related Works

Fed-XAI has recently attracted substantial attention due to the increasing demand for
trustworthy AI models that combine interpretability with strong data privacy guaran-
tees [8, 14, 15]. Existing Fed-X AT approaches can be broadly categorized into two main
groups. The first group includes inherently interpretable-by-design methods, such as
decision trees and rule-based systems, trained directly within federated settings [16—
18]. While these approaches offer built-in transparency, they often come at the cost of
reduced predictive performance. The second group consists of post-hoc interpretabil-
ity methods applied to complex opaque models (e.g., neural networks), which aim to
explain model behavior without compromising predictive accuracy. Among post-hoc
techniques, SHAP has emerged as one of the most robust and widely adopted tools
due to its effective feature-level explanations.

Several studies have integrated SHAP into FL, primarily focusing on tabular data.
Briola et al. [19] used SHAP for federated breast cancer classification, highlighting data
privacy benefits, but did not adequately address consistency among federated clients.
Sandeepa et al. [20] applied SHAP in cybersecurity to identify data poisoning attacks,



but their analysis of privacy implications related to background data generation was
limited. Corbucci et al. [21] proposed averaging local SHAP explanations, effectively
ensuring consistency and approximation of centralized results; however, their method
requires unrealistic assumptions regarding shared test data, thus weakening privacy
guarantees. Additional contributions, such as those from Asiri et al. [22], Saad et
al. [23], Kalakoti et al. [24], Sarker et al. [25], Abtahi et al. [26], and Fatema et
al. [27] either lack systematic analysis of privacy preservation, inter-client consistency,
or do not thoroughly evaluate the representativeness of background datasets used for
explanations.

While all these works primarily focus on tabular data, scenarios involving image
data introduce additional complexities, such as high dimensionality and spatial
structure, which pose significant challenges for generating privacy-preserving and
representative background datasets suitable for SHAP explanations.

Recent literature emphasizes FL as an effective privacy-preserving paradigm for
distributed training of image-based models, especially in sensitive domains such as
medical diagnostics [28, 29]. Concurrently, the integration of post-hoc explainability
techniques like SHAP and LIME (introduced in [30]) into deep image models has been
recognized as crucial for enhancing interpretability and user trust [31, 32]. However,
Fed-XAlI, specifically designed for image data, remains relatively unexplored. Existing
methods typically apply post-hoc explanations independently of the federated setting,
neglecting the potential impact of federated architectures on the quality, reliability,
and consistency of generated explanations. Moreover, quantitative metrics for assessing
inter-client consistency of visual explanations have rarely been investigated.

To address the aforementioned limitations, this work introduces a novel multi-
modal Fed-XAI approach, specifically designed to support both tabular and image
datasets. For tabular data, we propose the use of a Federated Fuzzy C-Means (Fed-
FCM) clustering algorithm [10] to collaboratively generate a representative and
privacy-preserving reference dataset for SHAP explanations. This method effectively
balances privacy constraints, explanation accuracy, and consistency, addressing gaps
identified in prior studies.

For image data, we introduce an innovative approach that leverages Federated Gen-
erative Adversarial Networks (GAN) to generate synthetic reference images [12, 33].
These synthetic images are used as a background for SHAP-based explanations,
addressing the critical challenge of constructing suitable reference datasets under strict
privacy constraints. Although federated GAN frameworks have been proposed to han-
dle data heterogeneity and maintain privacy in image synthesis tasks [34-36], their
application for systematically constructing reference datasets to support SHAP-based
explainability is, to the best of our knowledge, unprecedented.

In summary, previous Fed-XAI approaches present considerable limitations regard-
ing inter-client consistency, privacy, and explanation accuracy, especially in real-world
federated environments. Our multi-modal approach, labeled as FedSHAP-FCM for
tabular data and FedSHAP-GAN for image data, provides a comprehensive and robust
solution explicitly addressing these gaps. Through extensive experimental validation
against various baseline methods, our proposals significantly advance the state of
Fed-XAI research.



3 Federated SHAP

In this section, we first describe the problem addressed in this work and then outline
the proposed approaches to use SHAP in an FL setting. We collectively refer to them
as Federated SHAP (FedSHAP). Our methodology focuses on developing techniques
to generate representative background datasets in a privacy-preserving manner. In
devising the methodology, we also considered the well-known problem of the relevant
computational effort needed to calculate the Shapley values. The proposed techniques
are tailored to specific data types, namely tabular and image datasets.

3.1 Problem statement

We consider a scenario where M clients (m = 1,..., M) collaborate to create an
AT model for classification or regression tasks. The training phase is orchestrated by
an independent entity (e.g., a server). To reproduce a realistic situation commonly
found in decentralized settings, we simulated non-IID scenarios where the data are
horizontally partitioned: each client’s dataset has a distribution that does not follow
the overall data distribution and is also different from the other clients’ ones. For a
client m, the training data is indicated with (X™, Y™), where X" indicates an N, X F
matrix of N,, instances described by F input features, and Y™ indicates the vector of
the N,, associated target values. The generic instance of the training data for a client
m is indicated by xI", with ¢ € [1, N,,].

After the models are trained in an FL fashion, an explainability process is applied
to provide local explanations for the model predictions. In this work, we consider two
commonly used variants of SHAP, namely KernelSHAP for tabular data and Gradi-
entExplainer for images. The background on the two variants of SHAP is reported in
Appendix A. We envision that the AT model generated in FL can be used by entities
that do not have access to the FL clients’ individual training sets. Obviously, these
entities may also be clients that participated in the FL and that can have access only
to their own local datasets. To simulate this context, we adopt the setup shown in
Figure 1, where a unique test set is adopted for the evaluation of both the accuracy
of the prediction and of the explanations.

We recall the three desiderata for the explanations, as introduced in Section 1:

® Privacy: the explainability process should not violate the privacy of data owners,
which is a basic requirement of an FL setting;

® Accuracy: explanations obtained in the FL setting should faithfully approximate
the explanations that would be obtained in a centralized setting (i.e., in the
unrealistic case that the full training set is available at a unique location for the
computation of the Shapley values).

e (Consistency: different entities adopting the AI model generated in FL should
obtain the same explanations for identical data instances.

SHAP requires three elements to explain the model prediction f(x;): the instance
x; itself, the model f, and a background dataset representative of the distribution used
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Fig. 1: High-level schema of the accuracy and explanations evaluation setup.

to train the model f. Since we assumed, for data privacy reasons, that the indepen-
dent entity that deploys SHAP does not have access to the training sets of the clients,
a major challenge is represented by the creation of a background dataset that simulta-
neously allows the accuracy and consistency of the explanations. In addition, the size
of the background dataset should be carefully considered to minimize computation
time, and its generation process should not introduce significant computational over-
head. In the following, we describe the approaches to generate suitable background
datasets for tabular (FedSHAP-FCM) and image datasets (FedSHAP-GAN).

Throughout the FL and explainability process, we consider a privacy model, typi-
cally adopted in horizontal FL [10, 18], with honest data owners and semi-honest (or
honest-but-curious) central server: the server may attempt to infer private raw data
from the updates provided by data owners, while still adhering to the protocol of the
ML algorithm.

3.2 FedSHAP-FCM for tabular data

For tabular datasets, we adopt a strategy that we originally introduced in [9], where
the background dataset required by SHAP is constructed through a federated cluster-
ing process. In particular, we leverage the FedFCM algorithm [10], which enables the
collaborative extraction of cluster centroids across multiple clients holding horizon-
tally partitioned data. In a nutshell, the FedFCM process follows an iterative scheme
similar to classical FCM clustering algorithm. After the initial exchange of configura-
tion parameters and cluster centers, each round proceeds as follows, until convergence:
clients compute local statistics based on the current cluster centroids and transmit
only such aggregated statistics to the server. The server uses such information to
update the global cluster centroids and evaluate the stopping condition. The output
of FedFCM is the set of K centroids, which act as a compact and privacy-preserving
summary of the distributed data. These centroids are then used to compose the SHAP
background dataset. Details on FedFCM are provided in Appendix C.



We formally denote the FedSHAP-FCM process as follows:
FedSHAP-FCM g + FedFCM ((X',X2,...,XM)) (1)

An overview of the FedSHAP-FCM strategy is provided in Figure 2.
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Fig. 2: FedSHAP-FCM scheme for tabular datasets.

In our approach, clustering is not employed to discover semantically coherent or
well-separated groups, as often pursued in unsupervised learning, but rather as a
means of numerosity reduction. The goal is to reduce the number of instances in the
dataset while preserving its global structure and statistical representativeness. This
is particularly suitable for SHAP, which benefits from having a manageable set of
background instances that approximate the training data distribution.

Furthermore, the FedFCM algorithm ensures that data privacy is preserved
throughout the process. As detailed in [10], clients share only aggregated statistics with
the server, which does not have access to raw data and cannot reconstruct individual
samples from the received information. This makes the method well-suited for privacy-
sensitive federated environments. It is worth noting that the specific implementation
of the clustering algorithm is not critical to our objective: alternative recently pro-
posed approaches [37, 38] could be employed without affecting the core methodology.
Similarly, the integration of additional privacy-enhancing techniques, such as crypto-
graphic protocols and secure multiparty computation, remain conceptually orthogonal
to the methodology, and can be accommodated without modifying its core logic.

3.3 FedSHAP-GAN for image data

For image datasets, the strategy based on FedFCM is not applicable. Partitioning-
based clustering algorithms are known to be ineffective when applied to high-
dimensional data such as images, where centroids may fail to capture the underlying
structure of the data distribution.

A naive alternative could be to construct background images by applying pertur-
bations (e.g., noise, blurring, or pixelation) to the original images. However, unlike



tabular data, where features are often independent, image data is inherently struc-
tured: visual information depends on the spatial arrangement and correlation of pixels.
As a result, even perturbed images may preserve recognizable patterns, posing a
risk of privacy leakage. Increasing the perturbation magnitude may mitigate this risk
but would inevitably degrade the quality of explanations due to the resulting loss of
semantic information.

To overcome these limitations, we propose FedSHAP-GAN, a novel approach
to generate privacy-preserving and representative background datasets using GANs
trained in a federated fashion (FedGAN).

The method, illustrated in Figure 3, consists of two main steps:

1. The M participating clients collaboratively train a GAN using an FL scheme. At
each round, the server sends the current model to all clients, which update the
generator and discriminator locally on their private data. Only model updates
are sent back to the server, which aggregates them to refine the global model.

2. After training converges, the final version of the global generator is used to pro-
duce S synthetic images from random noise inputs. These images approximate
the overall data distribution and serve as the SHAP background dataset.
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Fig. 3: FedSHAP-GAN scheme for image datasets.

We formally denote this process as:
FedSHAP-GAN 5 + Fed-GANg (X', X?,...,XM)) (2)

This strategy offers two key advantages: it ensures that the background data
distribution reflects the entire federated training set, and it fully respects privacy
constraints, since no raw data is shared among clients.

It is worth noting that privacy-enhancing techniques, such as cryptographic meth-
ods, secure aggregation, and differential privacy, can be applied within the FedGAN
framework to further reduce the risk of information leakage. However, these techniques



are complementary to the proposed methodology and can be integrated without affect-
ing its core functionality. A detailed analysis of their impact on model performance
and computational overhead is beyond the scope of this paper.

Finally, we acknowledge that training a GAN in a federated setting can be compu-
tationally and communication-intensive. To assess the trade-off between training effort
and the quality of the generated explanations, Appendix E provides a comparative
analysis of different training configurations, using the MNIST dataset as a represen-
tative example, with 33%, 50%, and 100% of the local training data. For clarity, the
main results presented in this paper refer to the setting with full local data availability.

4 Experimental Setup

Our Federated SHAP approaches are compared to several baselines for the generation
of the background dataset. We first describe such baseline approaches and highlight
their limitations in terms of consistency, accuracy, and privacy. Then, we detail the
datasets exploited as test cases and outline the configuration of the approaches. Finally,
we discuss the computational complexity of the background generation strategies.

4.1 Baseline approaches for the generation of a background
dataset

The four baseline strategies for background generation are referred to as Centralized,
Random, LDP (i.e., Local Differential Privacy), and Local. Unlike Federated SHAP,
they do not simultaneously meet all three requirements of accuracy, consistency, and
privacy preservation, nor do they have the same level of applicability across different
types of data.

Centralized baseline

The centralized strategy creates a background dataset as the union of the local training
sets.

M
Centralized + U xm (3)
m=1

This is the approach commonly exploited in a centralized setup. Since all available
training data are exploited, the requirements of accuracy and consistency are met.
However, in an FL setting, this strategy is unfeasible because it involves the sharing of
private raw data, thus violating privacy. Obviously, the size of the background dataset

is that of the union of the local training sets.

Random baseline

The background dataset is created by randomly sampling K synthetic instances from
a uniform distribution over the input space, which is assumed to be known a-priori.
Notice that this assumption is reasonable in many real-world applications.

Randomy < Sampleg (U (a, b)) (4)

10



where a and b are the vectors of lower and upper bounds of the input features,
respectively. In the case of image datasets, each pixel corresponds to a feature, and
its range is determined based on the values observed in the training set. The strategy
does not involve the sharing of private raw data and can be safely adopted in an
FL setting. Different clients can refer to the same synthetic background dataset, and
this ensures consistency of explanations. However, a background dataset composed of
randomly generated instances may fail to capture the underlying distribution of the
original data, potentially compromising the accuracy and reliability of the resulting
explanations.

Local Differential Privacy (LDP) baseline

Differential privacy [39] is extensively used in the context of FL to provide formal
privacy guarantees throughout collaborative model training. In our Fed-XAI system,
however, the privacy issue is not limited to the FL of the AI model but also concerns
the generation of the background dataset for the application of SHAP in a federated
scenario. For this purpose, we introduce a novel baseline based on Local Differential
Privacy (LDP), which is considered a state-of-the-art approach for privacy-preserving
data collection and distribution [40]. Authors in [11] have recently explored the use
of data masking techniques, including LDP, in the context of TreeSHAP, which is a
variant of SHAP specifically designed for tree-based ML models. However, the scenario
examined by the authors pertains to a centralized setting and therefore falls outside
the scope of FL. Furthermore, their approach involves deriving both the model and
the explanations from perturbed data.

Our LDP strategy shares a similarity with the approach proposed in [11], as we also
use LDP in the form of additive noise for data masking, enabling post-hoc explainabil-
ity. In our LDP strategy, the background dataset is obtained as follows: first, Laplace
noise is added to local training data; then, the background dataset is generated as the
union of the perturbed local training sets.

M
LDP(e, s) « U (X™ + Laplace(p = 0, A = s/e)) (5)
m=1

The shape of the Laplace distribution depends on the scale parameter A = s/e,
which in turn depends on the sensitivity s and the privacy factor e. The sensitivity
of the data is typically set as the maximum possible change for an instance in the
dataset, whereas the privacy factor controls the amount of noise: a high € corresponds
to low noise, and vice versa. Thus, the LDP strategy ensures consistency (because
only one background dataset is used), and it offers a trade-off between accuracy and
privacy depending on the value of the privacy factor e.

As underlined in Section 3, the LDP approach is not suitable for image data. In
fact, due to the inherent spatial correlations between pixels, simple perturbations such
as noise, blurring, or pixellation do not adequately preserve privacy, as the global
structure and coarse-grained visual patterns may still be identifiable.

11



Local baseline

To avoid any privacy violation at explanation time, each entity could use its own local
data as a background dataset to produce the explanation for a novel instance. In our
experimental analysis, we suppose that the entities involved in making predictions and
explanations are the clients involved in the federated learning; the local background
dataset for each of the m clients is simply the local training set:

Local™ + X™ (6)

This strategy does not violate the privacy constraint. However, this baseline does

not ensure the consistency of the explanations, since the explanations obtained by

different clients on identical input instances can differ due to their different background

datasets. The differences can be particularly relevant in non-IID scenarios. As an
obvious consequence, explanations obtained with this strategy may not be accurate.

4.2 Datasets and data distribution scenarios

To evaluate the proposed approach across different tasks and data modalities, we
selected a diverse set of publicly available datasets, including binary and multiclass
classification problems as well as regression tasks. Specifically, we considered three
datasets for binary classification (Phoneme, Magic, Rice [41]), two for multiclass
image classification (MNIST [42] and CIFAR-10 [43]), and three for regression tasks
(PowerPlant, Concrete, Abalone [41]).

Table 1 summarizes the datasets in terms of data type (Type), namely tabular
(TB) or image (IM), task type (Task), namely binary classification (BC), multiclass
image classification (MC), or regression (RG), number of training (Nimin) and test
(Niest) instances used in our experiments and number of features (F). A more detailed
description of the dataset metadata is provided in Appendix B.

Table 1: Summary of the datasets used in the experiments.

Dataset Type Task Source Ny, qin Niest F
Phoneme (PH) TB BC [44] 4863 541 5
Magic (MA) TB BC [41] 17118 1902 7
Rice (RI) TB BC [41] 3429 381 7
PowerPlant (PP) TB RG [41] 8611 957 4
Concrete (CC) TB RG [41] 927 103 8
Abalone (AB) TB RG [41] 3759 418 7
MNIST (MN) M MC [42] 60000 10000 784
CIFAR-10 (CF) M MC [43] 50000 10000 3072

Each dataset (except MNIST and CIFAR-10) was randomly split into training
and test sets with a 90%-10% ratio, preserving the original distribution of the target
variable. For MNIST and CIFAR-10, we adopted the canonical train/test split com-
monly used in the literature. Additionally, to reduce the computational burden in the

12



explanation phase, we selected a stratified random subset of 1,000 test instances from
MNIST and from CIFAR-10 for SHAP evaluation.

To simulate a federated learning scenario, each training set was further divided
into 10 disjoint subsets, each assigned to a simulated client. The partitioning followed
a non-IID scheme to reflect realistic heterogeneity in FL settings [45]. In particular,
we introduced the following types of heterogeneity:

® Quantity skewness: clients are assigned training sets of varying sizes;

® Label distribution skewness: the distribution of the target variable differs across
clients;

® Feature distribution skewness: clients are sorted by increasing values of a selected
feature.

The resulting client-level distributions are illustrated in Figures B.1 and B.2 in
Appendix B.

All features were scaled in the [0, 1] range via min-max normalization. This prepro-
cessing step is compatible with federated settings, under the reasonable assumption
that feature ranges (or their estimates) are known to the server in advance.

4.3 ML models and FL algorithms configuration

We apply SHAP to explain the prediction of different opaque models, suitably designed
for different tasks and different data types. Since our main purpose is to assess the
explainability process in FL setting, we did not carry out a thorough optimization
of the models hyperparameters; we simply ensured that the selected configuration
achieved reasonable predictive performance. The main characteristic of the models are
presented in the following, while additional details are reported in Appendix D.

4.3.1 Models for tabular datasets

For tabular datasets, we employed a Multi-Layer Perceptron (MLP) as a representative
example of an opaque model. The network architecture comprises two hidden layers,
each with 128 neurons and ReLU activation, followed by an output layer. The latter
uses a sigmoid activation for classification tasks and remains linear for regression.
Overall, the model includes 17,793 trainable parameters.

Training is performed using the Adam optimizer with a learning rate of 0.01.
Binary Cross-Entropy and Mean Squared Error (MSE) are used as loss functions for
classification and regression tasks, respectively.

In the FL setup, we adopt the classical Federated Averaging (FedAVG) algorithm
for model aggregation [2]. Training is performed with a minibatch size of 64, 5 local
epochs per client, and a total of 20 federation rounds for classification tasks and 60
for regression tasks.

4.3.2 Model for image datasets

For the multiclass classification task with the image datasets, we adopted a CNN
architecture and federated training setup inspired by the work of Khuu et al. [46].

13



In the case of MNIST dataset, the CNN consists of two convolutional layers followed
by max pooling, a flattening stage, a dense layer with 128 units including dropout, and
an output layer with 10 units using softmax activation function for classification. The
total number of trainable parameters is 421,642. The loss function used is CrossEn-
tropyLoss, while model optimization was performed using the Adam algorithm with a
learning rate of 0.001. The FedAvg algorithm was employed as an aggregation strat-
egy in FL. Local updates were carried out on batches of size 64 for 3 epochs, followed
by weight aggregation to obtain the global model. The validation set constituted 20%
of the total training data. The training process employed an automated validation
mechanism to mitigate overfitting, based on a global validation loss computed as the
average of the local validation losses.

In the case of CIFAR-10 dataset, we adopted the architecture of the ResNet model,
often used to perform experiments on that dataset (as in [47]). In particular, we
used the ResNet-20 variant of ResNet [48] designed for low-resolution images (32x32
pixels in color), such as those in the CIFAR-10 dataset. The network architecture
comprises an initial convolutional layer followed by three groups of residual blocks.
Each residual block contains two 3x3 convolutional layers, each followed by batch
normalization and ReLU activation, with a shortcut connection. The three groups of
blocks operate at progressively decreasing spatial resolutions: the first group processes
feature maps at 32x32, the second at 16x16 (with downsampling performed in the
first block via a stride of 2), and the third at 8x8 (also with downsampling applied
in the first block). After completing the convolutional blocks, the network applies a
global Average Pooling that reduces each activation map to a single value, followed
by a fully connected layer that produces the final distribution over the 10 CIFAR-10
classes via a softmax activation function.

The total number of trainable parameters is 0.27 millions. The loss function used is
CrossEntropyLoss, while model optimization was performed using the Adam algorithm
with a learning rate of 0.001. The FedAvg algorithm was employed as an aggregation
strategy in FL. Local updates were carried out on batches of size 32 for 10 epochs, fol-
lowed by weight aggregation to obtain the global model. The validation set constituted
20% of the total training data. The training process employed an automated valida-
tion mechanism to mitigate overfitting, based on a global validation loss computed as
the average of the local validation losses.

4.4 Configuration of the approaches for background generation

The most influential parameter in FedSHAP-FCM is the number of clusters K pro-
vided as input to the partitioning clustering algorithm, as it also represents the size
of the resulting background dataset. We set K = 50 for all datasets to obtain a small
yet representative background dataset. Although larger background datasets typi-
cally yield more robust approximations of Shapley values [49], we intentionally use
a smaller background dataset, smaller even than those used in baseline approaches,
to show that, even under this constraint, Federated SHAP can achieve competitive
performance while preserving computational efficiency.

For the LDP strategy, we investigate the trade-off between privacy and accuracy of
the explanations by evaluating the achieved results for two values of the e parameter.
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Specifically, we created two background datasets considering all the instances of the
local training set: one with a high privacy factor e = 1 (LDPel, high noise), and one
with a low privacy factor e = 10 (LDPe10, low noise). In appendix G we have also
reported the results of experiments conducted with an intermediate ¢ = 5. They are
not reported here for the sake of brevity. The sensitivity parameter is set to s = 1, in
accordance with the fact that each feature lies within the range [0, 1] as a result of
MinMax normalization.

As regards the experiments with the FedSHAP-GAN with MNIST dataset, we
adopted the GAN architecture proposed in [34], which was applied in a similar case
study on MNIST dataset in a FL scenario. As regards the aggregation strategy and
the loss function, we took inspiration from the recent work on FL for GAN, discussed
in [36], in which the MNIST dataset was used by the authors in the experimental
analysis. Specifically, we employed the classical Fed AVG algorithm with full parameter
averaging. For the loss function, we adopted the standard minimax formulation of
GANS: the discriminator is trained to maximize its ability to distinguish real samples
from generated ones, while the generator is optimized to minimize the probability
of the discriminator correctly identifying its outputs as fake. In our implementation,
this objective is realized using the binary cross-entropy loss. Both the generator and
discriminator are trained using the Adam optimizer with fixed hyperparameters.

Details of the GAN generator module are provided in Table D.1 and D.2 in
Appendix D. The FedSHAP-GAN approach requires several configuration parame-
ters. The first group of parameters pertains to the FL process of the GAN model.
Each training session lasts 200 (600) rounds for MNIST (CIFAR), with early stopping
implemented to automatically halt the training when necessary. Weight aggregation
occurs after each local training epoch. The batch size is set to 64 (128). The clients
use the Adam optimizer for the local model training, with a learning rate of 0.0002
(0.0002) for the generator and 0.0001 (0.0002) for the discriminator. The exponential
decay rate for the first-moment estimate is 0.5 (0.5), and for the second-moment esti-
mate is 0.999 (0.999). The generator was fed a noise vector sampled from a Gaussian
distribution with zero mean and unit standard deviation. The size of the noise vector
is 100 (100) and corresponds to the generator’s latent space dimensionality.

An example of generated synthetic images is shown in Fig. 4 for the MNIST dataset
and in Fig. 5 for the CIFAR-10 dataset, and is an indication of the ability of the
network to generate realistic images.

Fig. 4: Examples of MNIST synthetic images generated by the FedGAN.
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Fig. 5: Examples of CIFAR-10 synthetic images generated by the FedGAN.

Scenario ‘ Dataset Generated images FID
Centralized GAN MNIST 6000 158.38 £+ 0.39

FedGAN MNIST 6000 204.61 + 0.83
Centralized GAN | CIFAR-10 5000 362.74 + 0.60

FedGAN CIFAR-10 5000 447.82 + 0.58

Table 2: Fréchet Inception Distance (FID) values calculated
with respect to the original images (60,000 images for MNIST
and 50,000 images for CIFAR-10).

Another influential parameter of FedSHAP-GAN is the size of the background
dataset, i.e., the number S of synthetic images generated by the FedGAN. We set
S = 6000 and S = 5000, namely the 10% of the entire training set, for MNIST
and CIFAR-10, respectively. We have experimentally verified that such a background
dataset still allows us to generate accurate explanations within a reasonable time (i.e.,
a few seconds).

Since the quality of the generated images can impact the final results of the pro-
posed methodology, we calculated the Fréchet Inception Distance (FID), introduced
in [50], of the images generated with different settings with respect to the original
dataset to quantitatively evaluate the similarity. Table 2 reports the FID values for the
different scenarios, repeated for ten different random seeds to ensure variability. The
FID values calculated by comparing images generated using our proposed FedSHA P-
GAN with those generated by a centralized version of the GAN (where all images are
available to a central server) are of the same order of magnitude. As expected, the
centralized approach yields better results. In addition, we also evaluated the influence
of the data distribution in the local training datasets comparing our Non-IID scenario
with an IID scenario (which is typically unrealistic in FL settings). The experimental
results show that image background generated through the GAN trained under the
non-realistic IID conditions yield only marginally improved explanation accuracy com-
pared to the performance observed under realistic Non-IID experimental conditions.
For the sake of brevity, we report the results in appendix F.

As regards Centralized and Random baselines, we recall that the size of the back-
ground dataset is equal to the number of the training instances, as shown in Table 1.
Finally, for the Local baseline, the size of each local background dataset is equal to
the size of the local training sets, as shown in Figures B.1 and B.2 in the Appendix B.
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Notably, several strategies for the generation of the background dataset incorporate
stochastic elements: Random involves sampling from uniform distributions. FedSHA P-
FCM relies on a clustering algorithm that depends on the random initialization of the
centroids; FedSHAP-GAN g entails multiple sources of randomness, including latent
noise instances from which image generation originates; LD P introduces random per-
turbations drawn from a Laplace distribution. Therefore, we performed 10 repetitions
of each of these methods with different seeds, in order to capture the variability
introduced by their stochastic components and assess its impact on the explanations
generated by SHAP.

4.4.1 Computational complexity of the approaches

The effort required to calculate the Shapley values using the SHAP method is a well-
known challenge. For this reason, in the explanation phase we used for both the tabular
and the image datasets a high-performance server equipped with two 56-core Intel®)
Xeon@®) Platinum 8480+ CPUs, 2 TB of RAM, and an NVIDIA A100-SXM4 GPU
with 80 GB of dedicated VRAM.

The computational complexity of KernelSHAP, used for tabular datasets, grows
exponentially with the number of features and linearly with the size of the background
dataset. Evidently, the latter is the only one we can tune in our experiments to control
the complexity at the explanation stage. At the explanation stage, FedSHAP-FCM
is the most efficient approach, as it operates with the smallest background dataset
compared to the other methods. We deliberately extend the background dataset of
the baseline approaches to match the size of the training sets: this comes at a cost, in
terms of efficiency, but allows them to leverage a larger set of samples, which typically
leads to more stable and accurate approximations of the Shapley values. Thus, in this
way, the baseline may provide explanations with the highest possible level of accuracy.

GradientExplainer, the SHAP variant used for the image dataset, also has a time
complexity that grows linearly with the number of background instances. For the
Centralized approach, we used all available instances to establish the baseline for the
accuracy evaluation. Conversely, for the Random and FedSHAP-GAN approaches, we
reduced the background size to 10% of the available instances, significantly lowering
the computational cost compared to the Centralized approach, while ensuring that
both methods operate under the same computational constraints. The evaluation of
explainability results on 1,000 MNIST and CIFAR-10 test images is the most compu-
tationally demanding part of our experiments. For MNIST, computing the explanation
for a single instance using the full centralized background of 60,000 images required
75 seconds. Employing a background dataset of 6,000 images (as in FedSHAP-GAN)
reduced the computation time to 7 seconds. Regarding CIFAR-10, we observed sim-
ilar execution times: computing the explanation for a single instance using the full
centralized background of 50,000 images required 98 seconds, which was reduced to
10 seconds when employing a background dataset of 5,000 images.

Another aspect to be considered is the computational effort required to generate
the background dataset. Unlike baseline approaches, which simply rely on collect-
ing raw data or computing random perturbations, the proposed Federated SHAP
approaches introduce an additional overhead for the background generation itself.
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FedSHAP-FCM entails the execution of the FedFCM clustering algorithm, whereas
FedSHAP-GAN requires training a GAN in the federated setting and exploiting it
for generating images. The overhead is incurred just once, during the background
dataset generation stage, and does not affect the efficiency at explanation time. In
our experiments, we measured that FedFCM runs in a few seconds, even on the
most demanding dataset (Magic). For the sake of completeness, in appendix C we
report the average and standard deviations of the execution times for all the datasets
over 10 experiments. Training the GAN takes about 10 (40) minutes for MNIST
(CIFAR-10), while generating 6,000 (5,000) images takes less than 10 (13) seconds
for MNIST (CIFAR-10). These results suggest that, despite the additional computa-
tion required for background dataset generation in Federated SHAP approaches, the
overhead remains largely manageable in practice.

5 Experimental Results

This section presents the experimental results, covering three complementary aspects.
First, we assess the predictive performance of the opaque models trained in the FL
setting, comparing them to their counterparts trained in a centralized configuration.
This comparison serves to validate the FL paradigm as a viable learning strategy in our
context. Second, we evaluate the accuracy of the explanations produced by the pro-
posed Federated SHAP methods, benchmarking them against alternative background
generation strategies introduced in Section 4.1. Finally, we examine the consistency
of the explanations across clients, highlighting how the different strategies affect the
coherence of local attributions in a federated setting.

5.1 Model performance evaluation

Before evaluating the quality of the explanations provided by our proposed Federated
SHAP method, we assess the predictive performance of the underlying models trained
in the FL setting.

For each dataset, we report test set performance using standard metrics: accuracy
and Fl-score for classification tasks, and R?> and RMSE for regression tasks. These
results reflect the predictive reliability of the models upon which the explanations are
applied.

To provide a reference baseline, we also include the performance of models trained
in a Centralized Learning (CL) setting, in which all client data are aggregated and
training occurs on a single, unified dataset. Although this setting breaches privacy
constraints and is not feasible in federated contexts, it provides a valuable upper bound
for assessing the competitiveness of FL-based training.

Table 3 summarizes the performance results across all datasets. As expected, CL
slightly outperforms FL in most cases, due to the availability of the entire dataset
and the absence of client heterogeneity. Nonetheless, the federated models achieve
comparable performance across both classification and regression tasks, supporting the
feasibility of applying post-hoc explainability techniques within a privacy-preserving
training framework.
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Table 3: Performance metrics on the

test set.

FL CL FL CL

Accurac F1l-score

uracy (class 1)
Phoneme 0.79 0.85 0.70 0.78
Magic 0.86 0.89 0.79 0.83
Rice 0.89 091 0.87 0.89

Accurac F1-score
4 (weighted)
MNIST 0.99 099 0.99 0.99
CIFAR-10 0.91 0.92 0.91 0.92

RMSE R2

PowerPlant 5.05 3.86 0.91 0.94
Concrete 10.56 4.01 0.61 0.94
Abalone 2.09 2.01 0.60 0.63

As expected, the models trained according to the CL paradigm slightly outperform
their FL. counterparts. This is reasonable since, in the CL setting, the full training
set is assumed to be available to a single entity for the learning phase. We assume
that the small gap in performance does not undermine the considerations about model
explainability reported hereafter.

5.2 Explainability analysis

The post-hoc SHAP method explains AT model decisions by assigning Shapley values
to features, quantifying their impact on each individual prediction. It is worth noting
that in the following analysis, we consider the explanations provided with respect to
the model generated in the FL scenario. To evaluate the soundness of the different
background generation strategies, we calculate for each strategy s the Shapley values
for all the instances in the test set. In this way, we obtain a matrix ®, with shape
Niest X F', where F' is the number of features. To assess the accuracy of a strategy, we
calculate the discrepancy with respect to the ® ceniratized matrix, which is obtained
using the full training set as background dataset. As discussed in [9], the discrepancy
is quantitatively assessed by calculating the Frobenius norm of the pairwise difference
between the generic ®; and the ® cepiratizeq matrices. The Frobenius norm of a matrix
A with r rows and ¢ columns is defined as the square root of the sum of the absolute
squares of its elements:

[Allr =

where a;; is the element of A in the ith row and jth column, with ¢ = 1,...,r and
ij=1...,c
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The accuracy of a strategy is thus assessed as the discrepancy given by ||®s —
D Contralized || F: Obviously, the higher the discrepancy, the lower the accuracy.

Hereafter, we report a separate discussion for the tabular and image data, because
of the differences in the strategy of the background generation and in the visualization
of the explanations.

5.2.1 Explanations for tabular datasets

To illustrate the process of obtaining numerical results with KernelSHAP on tab-
ular datasets, we take the PH dataset as a representative case. We used the
KernelExplainer class from the SHAP Python library?. Figure 6 provides a visual
representation of the results.

cDCentralized
higher Clower '_ O 2
0.03 g
0.00 0.05 010 015 020 025 030 035 0.40 [V}
p= -0.0
NI . 2
g
v2 | v v3 V5| va - B _02
L o,
Features
(a) Shapley values visualized using the SHAP force (b) @ Centratizea Mmatrix: Shapley values
plot for an instance of the PH test set (#282), for the PH test set, estimated via the
estimated via the Centralized approach. Centralized approach.

Fig. 6: Comparison of Shapley value visualizations for the PH test set using the
Centralized approach.

Figure 6a reports an example of data visualization for the Shapley values for an
individual decision randomly extracted from the test set (#id 282). For this example,
the features V1,V3,V4, and V5 have a negative impact on the final decision, while
the feature V2 contributes positively. In detail, the model classifies the instance as
class=0, with the Shapley values equal to ¢y = —0.22, ¢pyo = +0.02, ¢y = —0.11,
dva = —0.02 and ¢y5 = —0.02 and finally ¢y = 0.38.

The same procedure can be applied to all test instances to obtain the ® matrix that
summarizes global insights of the explanations. Fig. 6b shows the ® centralizeq matrix.

Fig. 7 shows the ® matrices used to calculate the accuracy of all strategies. Figs. 7a,
7b, 7c, 7d show the results for one of the ten different trials obtained by changing the
random seed for the FedSHA P-FCM, Random, LDP with e = 1, and LDP with ¢ = 10,
respectively. In the case of the Local strategy, the loss of accuracy is a consequence of
inconsistency of explanations. If the explanations obtained from the various clients are

Zhttps://shap.readthedocs.io/en/latest /generated /shap.KernelExplainer.html, visited April 2025
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different from each other, they cannot coincide with the explanation obtained in the
centralized case. For this reason, we do not report the numerical results regarding the
local approach here, but rather discuss it in the next section regarding the consistency
of explanations.
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Fig. 7: Explainability analysis on PH dataset: Shapley values obtained with FedSHA P-
FCM, Random and LDP strategies and comparison with Centralized.

Taking FedSHAP-FCM and Random strategies as an example, the evaluation
of the Frobenius norm on the resulting matrices leads to the following results:
||(I)FedSHAP7FCM - §Cent'ralized”F = 2.23 and ||¢Random - (I)Centralized”F = 4.31. This
suggests that the approach based on FedFCM is more accurate than the Random
one, in this particular experiment. Subsection 5.3 presents the full numerical results,
also taking into account the 10 repetitions performed for each strategy with different
random seeds.

The evaluation of numerical results, however, cannot disregard the understanding
of the impact that such discrepancies have on the explanations provided to the end
user or the involved stakeholders. To gain a first intuitive insight about this aspect,
we analyze the explanations, i.e., the Shapley values, provided by each approach for a
single instance. The instance considered represents the worst-case scenario for Feder-
ated SHAP, i.e., the one where the distance between the Shapley values obtained by
FedSHAP-FCM and those obtained by Centralized is the greatest. Explanations are
visually depicted in Fig. 8.

We can observe how the explanations provided by FedSHAP-FCM and Centralized
are substantially in agreement, even in the considered worst case: for both strategies,
the most impactful feature is V2, and in general, the signs of the Shapley values
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Fig. 8: Shapley values obtained with Centralized, FedSHAP-FCM, Random, LDPel,
and LDPel0 approaches on the instance #1492 of PH dataset, for which the distance
between the Shapley values obtained with FedSHAP-FCM and with Centralized is

maximum.

are the same. Vice versa, this is not always true for the Random approach, where
both signs and rank of feature importance are not always in agreement. A similar
consideration applies to the LDP strategies, where as the privacy factor € increases,
the noise decreases and the explanations become more accurate. This analysis also
confirms that the properties of the background dataset are critical to provide accurate
and trustworthy explanations.

5.2.2 Explanations for the image datasets

For image data, explanations were generated using the GradientExplainer compo-
nent of the SHAP library®. Each explanation is represented as a 28 x 28 heatmap
for MNIST and a 32 x 32 heatmap for CIFAR-10, where pixel intensities indicate the
Shapley value of the corresponding input feature. Red and blue tones indicate positive
and negative contributions to the model’s decision, respectively, with color saturation
proportional to importance magnitude.

Considering MNIST, Fig. 9 highlights the qualitative differences in SHAP expla-
nations produced with different background datasets for the same test instance. As
expected, the explanation obtained with the Centralized background (Fig. 9¢) pro-
vides a clear and coherent attribution: positive contributions (in red) align with the
characteristic loops of the digit “8”, while negative contributions (in blue) appear
in less relevant peripheral regions. Notably, the explanation obtained with our pro-
posed FedSHAP-GAN strategy (Fig. 9¢) closely matches the centralized reference in
both structure and polarity. The key discriminative areas are correctly identified, con-
firming that the synthetic background generated by the federated GAN is effective
in approximating the true data distribution. In contrast, the explanation generated
using a Random background (Fig. 9d) is considerably more diffuse and noisy, with
scattered contributions and limited interpretability. This reinforces the importance of
using realistic and representative background datasets for SHAP in federated contexts.

3https://shap.readthedocs.io/en/latest /generated /shap.GradientExplainer.html
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We observe that, for the specific dataset, both the FedSHAP-GAN and Random
strategies assign non-negligible SHAP values to the border pixels surrounding the
digit, forming a visible frame. This artifact is completely absent in the Centralized
explanation. Importantly, the border effect is significantly less pronounced when using
our proposed FedSHAP-GAN strategy, while it appears markedly stronger and more
spatially uniform in the Random case. This contrast suggests that the GAN is able to
approximate the structural distribution of the original data to a much greater extent
than random background generation, which fails to respect the semantics and layout
of the input space. Indeed, GAN-generated images may occasionally introduce subtle
artifacts near the image edges, whereas random images, being entirely unstructured,
can result in systematic misalignment. These edge mismatches can lead the model to
interpret the border pixels as informative, thereby distorting the attribution process.
This analysis underscores the critical importance of ensuring that background datasets
are both realistic and well-aligned with the input data distribution when applying
SHAP in federated settings.

(a) (b) (c) (d)
Fig. 9: (a) Random image (#810) from the MNIST test set; SHAP explanation using:
(b) Centralized approach, (c) FedSHAP-GAN approach, (d) Random approach.

(a) (b) (c) ()
Fig. 10: (a) Random image (#810) from the CIFAR-10 test set; SHAP explanation
using: (b) Centralized approach, (c) FedSHAP-GAN approach, (d) Random approach.

To support this qualitative insight with quantitative evidence, we computed the
Shapley values for all test instances using each strategy. The resulting explanations
were flattened and assembled into a matrix ® for each strategy s, having shape Nyest X
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F (with F' = 784 in the MNIST case). As for tabular datasets, explanation accuracy is
assessed by measuring the Frobenius norm between each ®4 and the reference matrix
i Centralized -

Similar considerations can be made for the CIFAR-10 dataset. Fig. 10 illus-
trates how the different approaches provide different explanations when applied to
a randomly selected image (ie, a truck). Notably, the explanation generated by
using FedSHAP-GAN shows greater similarity to that obtained via the Centralized
approach, compared to the explanations derived from the Random procedure. In par-
ticular, the intensity and spatial patterns of the Shapley values in Fig. 10c are much
closer to the ones in Fig. 10b, suggesting that the same areas (likely, the truck’s edges)
are being identified as relevant. On the contrary, the explanation provided by Fig.
10d contains much lower and disperse Shapley values, indicating that the generated
image may fail to capture key contribution regions. This suggests that the proposed
federated strategy is more effective in preserving the underlying patterns. Also in this
case, to provide a quantitative comparison, we computed the Shapley values across the
test set for each approach s. Given the three-channel RGB structure of the CIFAR-10
colored images, the Shapley values are calculated independently for each color chan-
nel and then flattened as a unique @, matrix. Finally, the Frobenius norms between
each @, and the reference ®centralizeq Mmatrix are used to compare the accuracies of
explanations.

5.3 Accuracy analysis of the explanations

We report the numerical results of the accuracy of the explanations related to the dif-
ferent strategies for the generation of the background datasets, separately for tabular
and image case studies.

5.3.1 Accuracy of explanations for the tabular datasets

Figure 11 reports, for each strategy s and for each dataset, the boxplots of the ten
values of ||®s — ® centratized ||F, Obtained with as many repetitions with different seeds.

The results confirm the suitability of the proposed Federated SHAP strategy for the
tabular datasets taken into account. The boxplots illustrate that, in general, the expla-
nations produced by FedSHAP-FCM are highly accurate, i.e., more closely aligned
with those obtained using the Centralized baseline, compared to the other strategies
(Random and LDP).

As expected, the privacy factor plays a key role for the LDP strategy. On the one
hand, with a high privacy factor (e = 1, LDPel) the additive noise makes the expla-
nations completely inaccurate and often worse than in the Random case, where the
background instances are synthetic examples randomly sampled from the domain. On
the other hand, with a low privacy factor (e = 10, LDPe10), the magnitude of the
perturbation is reduced, and the explanations are accurate and comparable to those
obtained with FedSHAP-FCM. However, it is worth highlighting two key differences
between FedSHAP-FCM and LDP. First, the background dataset in FedSHAP-FCM
consists of only 50 elements, whereas in LDP, it matches the size of the training set,
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Fig. 11: Boxplots of the discrepancy of the FedSHAP-FCM, Random and LDP
approach with respect to the Centralized approach, in terms of Frobenius norm of the
pairwise difference of ® matrices.

making it one or two orders of magnitude larger, depending on the dataset. This con-
firms that FedSHAP-FCM can provide accurate explanations while maintaining high
computational efficiency. Second, FedSHAP-FCM utilizes a background composed of
centroids rather than real perturbed instances, which can be considered beneficial in
terms of privacy protection, especially with a low privacy factor as in LDPel0.

The variability induced by the seed is limited and never affects the ranking of the
various strategies in terms of accuracy. The highest variability is observed for LDPel,
particularly on the PH and PP datasets.

5.3.2 Accuracy of explanations for the image datasets

In the case of image data, we evaluate the accuracy of the explanations obtained
using our proposed FedSHAP-GAN strategy, which relies on a synthetic background
generated via a federated GAN. As a baseline, we consider a Random strategy, where
the background dataset consists of unstructured, noisy images.
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Figure 12 reports, for each strategy, the distribution of the discrepancy scores
|®s — ® centratized||F OVer ten repetitions with different random seeds.
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Fig. 12: Boxplots of the discrepancy of the FedSHAP-GAN and Random approaches
with respect to the centralized Centralized approach, measured as the Frobenius norm
of the pairwise difference of ® matrices, for MNIST (12a) and CIFAR-10 (12b) case
studies.

The results confirm that FedSHAP-GAN outperforms the Random baseline: its
explanations are notably closer to those produced by the centralized model, high-
lighting the effectiveness of the proposed method in approximating the true data
distribution without direct access to real training images.

While some discrepancy with the Centralized reference remains, likely due to the
fully synthetic nature of the background, the explanations produced by FedSHAP-
GAN are consistently more accurate than the ones generated by the Random strategy
and stable across trials. This reinforces the validity of using generative models to
support post-hoc explainability in privacy-preserving federated contexts.

To assess whether increasing the size of the synthetic background improves expla-
nation quality, we conducted an additional experiment using the FedSHAP-GAN
strategy with a background composed of 60,000 synthetic images for the MNIST test
case, matching the size of the original training set. The average distance between
the Centralized and the FedSHAP-GAN configuration with 6,000 images is equal to
34.36, and it closely matches the value of 34.25 observed for the setup of FedSHA P-
GAN with 60,000 images. This confirms that using a background of moderate size,
such as 6,000 synthetic images, is sufficient to generate reliable and faithful SHAP
explanations, while significantly reducing memory usage and computational cost.

5.4 Analysis of the consistency of explanations

The proposed FedSHAP-FCM and FedSHAP-GAN strategies inherently meet the
consistency requirement, because the background used to calculate the Shapley values
is common and available to all clients. In other words, two distinct clients would obtain
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exactly the same explanation given two identical test instances. In fact, the cluster
centers obtained with FedFCM and the synthetic images generated by the FedGAN
can be shared with any client without violating data privacy.

In this section, we analyze the issue of consistency for the Local approach, where
no common background is available, and each client applies the SHAP procedure using
its own local training data as the background dataset. We will show that consistency
is not ensured, especially for non-IID situations. In the following, we outline the issue
of consistency of the local approaches considering individual examples of explanations
for both tabular and image datasets.

5.4.1 Consistency Analysis for the Tabular Dataset

To assess the consistency of the explanations across clients, we analyze the Shapley
values obtained for a single instance of the PH dataset (instance #0) using the Local
approach, in which each client generates its own explanations based solely on its local
training data as background dataset. For comparison, we also report the explanation
obtained for the same instance using the proposed FedSHAP-FCM strategy.

Figure 13 shows the Shapley values for the five input features, with each color
representing the output from a different client in the Local case, and the blue bars cor-
responding to the explanation obtained using the FedSHAP-FCM background dataset.
As evident from the figure, the Local explanations exhibit a high degree of variability
across clients. In some cases (e.g., features V1 and V2), different clients assign oppo-
site signs to the same feature, leading to conflicting interpretations. This variability is
expected due to the non-IID nature of local training data, which causes each client to
operate over a different feature-label distribution. The resulting explanations, though
technically valid for each local dataset, are inconsistent when viewed from a global
perspective. In contrast, the explanation obtained with FedSHAP-FCM provides a
unified and stable interpretation, as it is based on a federated summary of the full
training distribution.
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Fig. 13: Shapley values for instance #0 of the PH dataset: comparison between client-
specific explanations obtained with the Local approach and the explanation provided
by FedSHAP-FCM.
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As already discussed in Section 5.2.1, the Local approach is also unable to guarantee
the accuracy of the explanations, since each client uses a limited and biased subset of
the training data as background dataset. This not only reduces the representativeness
of the background distribution but also amplifies the inconsistency of the attributions,
potentially leading to misleading explanations when deployed in practice.

5.4.2 Consistency Analysis for the Image Dataset

To investigate the consistency of explanations in the image domain, we consider as
a representative of the image data the MNIST dataset and we simulate a realistic
scenario involving three new clients (A, B, and C) that did not participate in the
federated training of the image classification model. These clients possess only a small
amount of local data, with significantly unbalanced and non-IID label distributions.

Figure 14 shows the data distribution for the three clients. Client A has a relatively
balanced dataset that includes all classes, whereas Clients B and C lack coverage for
several classes, making the scenario representative of practical deployment conditida
confrontare ons in FL systems.
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Fig. 14: Data distribution of three new joining clients.

In this setting, explanations are generated using three strategies: Local (each client
uses its own local dataset as background), FedSHAP-GAN (the background includes
the centroids of the clusters generated by FedFCM), and Centralized (the background
dataset is obtained joining the local training sets of the clients which participated in
the FL). Figures 15 and 16 report, respectively, the SHAP explanations for two sample
instances from the MNIST test set: #689 (classified as digit 6) and #808 (classified
as digit 8).

For instance #689, we observe that the SHAP explanations produced by the three
clients under the Local strategy differ substantially. As shown in subfigures 15d—15f,
the salient regions of the image vary widely between clients, with Client A producing
the most plausible explanation, likely due to its more complete data distribution (cf.
Figure 14). Clients B and C, which lack samples of class 6 in their local datasets,
produce explanations with low alignment to the true decision logic.

Conversely, the explanation obtained using FedSHAP-GAN (Fig. 15¢) is qualita-
tively close to the centralized one (Fig. 15b), capturing similar regions with comparable
attribution strength.
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(a) Inst. #689 (b) Centralized  (c) FedSHAP-GAN (d) Local A (e) Local B (£) Local C
Fig. 15: Comparison of explanations for instance #689: (a) original image, (b) expla-
nation with Centralized, (c) with FedSHAP-GAN, (d—f) explanations by Clients A, B,
and C using the Local approach.

(a) Tnst. #808 (b) Centralized  (c) FedSHAP-GAN (d) Local A (e) Local B (f) Local C
Fig. 16: Comparison of explanations for instance #808: (a) original image, (b) expla-
nation with Centralized, (¢) with FedSHAP-GAN, (d—f) explanations by Clients A, B,
and C using the Local approach.

A similar pattern is visible, for instance #808 (Figure 16). In this case, only Client
A has examples of class 8 in its background dataset; the explanations produced by
Clients B and C appear noisy and structurally inconsistent. Again, the explanation
provided by FedSHAP-GAN remains aligned with the centralized one.

These results highlight two key observations: (i) the Local strategy leads to incon-
sistent and sometimes misleading explanations, particularly when the local dataset is
small and unbalanced, and (ii) our proposed FedSHAP-GAN method provides stable,
centralized-like explanations even for clients that were not involved in the training
process.

As discussed in Section 5.2.1, the Local strategy also fails to guarantee explana-
tion accuracy. In this case, the issue is further exacerbated by the spatial nature of
image data, where poorly representative background distributions can result in noisy or
even contradictory attributions. FedSHAP-GAN, by contrast, offers a robust alterna-
tive capable of supporting consistent and accurate post-hoc explanations in federated
settings.

6 Conclusions

In this work, we addressed the challenge of making opaque Al models explainable in
privacy-preserving, distributed machine learning scenarios. Specifically, we proposed a
novel framework, Federated SHAP, aimed at generating post-hoc explanations that are
both accurate and consistent, while complying with the constraints of the Federated
Learning paradigm.
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Two strategies were developed and evaluated. For tabular data, we introduced
FedSHAP-FCM, which leverages a federated version of the Fuzzy C-Means clustering
algorithm to summarize the training data of each client into a shared, privacy-
preserving background dataset. For image data, we proposed FedSHAP-GAN, where
a Generative Adversarial Network is trained in a federated fashion to synthesize real-
istic reference images that approximate the training distribution without revealing
sensitive information.

Our extensive experimental evaluation covered both classification and regression
tasks across a variety of benchmark datasets. The results confirm that FedSHAP-FCM
achieves a strong balance between privacy, explanation accuracy, and consistency.
It consistently outperformed baseline methods such as Local, where each client uses
its own training data as background at explanation time, resulting in inconsistent
and biased explanations; Random, which builds a shared background from uniformly
sampled synthetic data, leading to uninformative attributions; and LDP, where clients
perturb their local data with noise to preserve privacy before contributing to a shared
background, introducing an inherent accuracy-privacy trade-off. Notably, FedSHA P-
FCM was able to match or exceed the explanation accuracy of LDP, even when using
a smaller and more efficient background dataset.

In the case of image data, FedSHAP-GAN provided more faithful and structured
explanations than those obtained with random synthetic backgrounds, especially in
terms of spatial coherence. While a residual gap remains compared to the centralized
baseline, the method offers a practical and effective solution for federated explainability
when visual features and high-dimensional inputs are involved. Additional analyses
also showed that using a moderately sized background is sufficient to achieve good
performance, making the method efficient and scalable.

Moreover, we demonstrated that the explanations produced by Federated SHAP
remain consistent and meaningful even for new clients joining the federation after
training, and with highly heterogeneous local data distributions. This is a critical
feature in real-world federated systems, where clients often operate with limited and
non-representative data.

Future work will extend this approach to other data types such as textual data,
explore its integration with alternative post-hoc methods, and involve human-in-the-
loop evaluation to further validate the interpretability and trustworthiness of the
explanations.
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Appendix A Background: SHAP post-hoc method

Among the many post hoc explanation methods available, SHAP [5] is arguably the
most widely used. This predominance is due to different factors: i) its mathematical
foundation, based on game theory, is solid and renowned, ii) it can be used both for
regression and classification tasks, iii) it can be applied to tabular, images, as well as
textual datasets, iv) the interpretation of the explanations is quite straightforward;
and v) its model-agnostic variants can be applied to any kind of AT model.

In detail, SHAP assigns the importance of the features by estimating the Shapley
values, a concept introduced by L. S. Shapley in [6] for cooperative games. In the con-
text of game theory, the Shapley values are the different rewards assigned to different
players of a coalitional game, depending on the different ways in which each player
contributes to the total game payout. In the context of XAI, the Shapley values cor-
respond to the different contributions of the individual input features (the players) to
the Al-model output (the game payout): as a consequence, Shapley values serve as a
measure of feature importance. Formally, given a model f and an input instance x;
with F input features, the output f(x;) is expressed as the sum of the Shapley values:

f(xi) = o + Z ®; (A1)
=1

where ¢; (with j = 1...F') are the F' Shapley values and ¢ is a reference value given
by the average of the f() results over a reference dataset.

The interpretation of the Shapley values is intuitive: the larger the absolute Shapley
value, the greater the impact of the corresponding feature on the model decision.
Positive (negative) values correspond to positive (negative) contributions to the model
output.

The computation of the Shapley values involves calculating the marginal contri-
bution of all the possible coalitions of features. A single marginal contribution of a
feature j is the difference between the prediction of the model for an instance x; and
the prediction of the model for an input X; where all the feature values are the same
as in x; except for the value of the feature j that is replaced by a perturbed value.
This is repeated for all possible coalitions of features, where a coalition is defined by
the presence or absence of any number of features. This can be achieved by perturb-
ing the instance extracting values from a background (also called reference) dataset.
Since the exact calculation of the Shapley values is demanding in terms of computa-
tional effort, several approximation techniques have been proposed over time. Among
them, Lundberg et al. introduced several SHAP variants in [5] such as KernelSHAP
and GradientExplainer [51, 52]. KernelSHAP is widely used because it is a model-
agnostic method (that is, it can be applied to explain any kind of ML model). The
related procedure is described in the Algorithm 1.

GradientExplainer is an extension of the integrated gradients method [53], that is,
a feature attribution method designed for differentiable models.

We refer to [54] for a discussion on GradientExplainer. Briefly, given the individual
instance x; and a background instance r, different gradient points G can be calculated
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Algorithm 1: KernelSHAP algorithm

Require: R: reference dataset, where each instance is defined by F' features;
Require: f: predictive model;

Require: x;: instance for which the prediction f(x;) needs to be explained;
Output: Shapley values ¢;, for j =1,..., F.

: Sample K coalitions 2}, € {0,1}, with k € {1,..., K}, from the possible coalitions

that can be generated. A value of 1 means that the corresponding feature value is
“present” and 0 that it is “absent”.

:fork=1,...,K do

Compute z = hy(z},), where h, : {0,1}" — R maps a coalition of features
into the original feature Space. > For example, a coalition zj = (0,1,0,1) is transformed
into an instance z, as follows: since the second and fourth features are present in the
coalition Zl/w the corresponding values of zj are taken from the input instance x;. Since the
first and third features are absent in the coalition z;c, the corresponding values of zj are
taken from an instance randomly sampled from the reference dataset R.

Compute the prediction of the model f(hs(z},))

Compute the weight for each zj, with the following SHAP kernel:

(F-1)
(|5/|)|Zl‘(F* 12'])

(') =

where |2’| is the number of non-zero elements in 2’

. end for
. Estimate the Shapley values ¢; by optimizing the loss function

K
L(f,g,m:) = Z[f(hx(sz)) — g(z1)*ma(21,) (A2)
k=1
with .
g(2') = ¢o + Z bz (A3)
j=1

: return the Shapley values ¢;

as:

G=mx;+ (1 —m)r (A4)

with 7 a constant in the range [0, 1]. The average of the gradients over the background
dataset gives an estimate of the behaviour of the model around z, and the Shapley
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values can be calculated as

o= £[ 29

In this sense, the expected gradients approximate the Shapley values [5] assuming
that a linear approximation around the point is realistic. GradientExplainer is known
to be computationally more efficient with respect to KernelSHAP, and it is often
used to explain NN models. Other SHAP variants are specially optimized for specific
purposes: TreeSHAP, for example, is commonly adopted to explain tree-based models.

Appendix B Datasets description

The Phoneme (PH) dataset originates from a European project (ROARS), aimed
at the development of a real-time analytical system for French and Spanish speech
recognition. This dataset is available in the OpenML repository [44] and is used for a
binary classification task of distinguishing between nasal and oral vowels. In particular,
the input features are the amplitudes of the first five harmonics, normalised by the
total energy (integrated on all the frequencies).

The Magic (Major Atmospheric Gamma Imaging Cherenkov Telescopes) dataset
is a well-known classification dataset available in the UCI Machine Learning Repos-
itory dataset collection [41]. Tt consists of 19,020 instances generated via Monte
Carlo simulation to model the detection of high-energy gamma particles by an atmo-
spheric Cherenkov telescope. The classification task consists of discriminating between
background and gamma signal events thanks to 10 different attributes.

The Rice dataset is generated from pictures of two rice species, the Osmancik and
the Cammeo species. From each image, seven morphological features are extracted,
and a binary classification task is enabled. Also, this dataset is available in the UCI
Machine Learning Repository dataset collection [41].

The Power Plant (PP) dataset contains 9568 data points collected from a Combined
Cycle Power Plant over 6 years (2006-2011), when the plant was set to work with
full load. This dataset is available in the UCI repository [41] and has four numerical
continuous features used for the regression task: predict the hourly output power given
the hourly average ambient variables temperature (AT), the ambient pressure (AP),
the relative humidity (RH) and the exhaust vacuum (V).

The Concrete (CC) dataset consists of 1030 instances and is used to predict the
compressive strength of high-performance concrete as a regression task. It is composed
of 8 features and is available in the UCI repository [41].

The MNIST (MN) dataset [42] contains 70,000 handwritten digits (i.e. 10 labels)
and is commonly used as a reference dataset for comparing classification models.

The CIFAR-10 (CF) dataset [43] contains 60,000 colour images in 10 classes (air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) and is commonly used
as a reference dataset for comparing classification models.

The abalone snails, considered worldwide as a food delicacy, are the subject of
the Abalone (AB) dataset. The regression task has the objective of determining the
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number of rings of the snails, using as input the physical information of the shell. The
number of rings is commonly related to the age, which is used to determine their price.
The dataset is then split into training and test sets, with non-IID scenarios enforced
as described in Section 4. The class distributions across the 10 clients’ training sets
for each of the datasets considered in this study are shown in Figures B.1 and B.2.
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Fig. B.1: Number of instances per client. The color indicates the marginal distribution
of the target. (a, b, ¢) Binary classification tasks — (d, e, f) Regression tasks.

Appendix C Federated Fuzzy C-Means Clustering
algorithm

The Federated Fuzzy C-Means (FedFCM) procedure is schematized in Fig. C.1.

First, a center initialization procedure is executed: the central server transmits the
initial configurations to the clients, including the number of clusters K (defined a priori
by the user) and the value of the fuzziness parameter A. The server also randomly
initializes the cluster centroids and sends them to the clients. As an alternative to
random initialization, the authors in [10] suggest a federated version of k-means++
for the careful seeding of the clustering algorithm.

At each iteration of the protocol, the clients locally update the cluster membership
degrees of the objects, based on the centroids received. Then, each client calculates
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Fig. B.2: Number of instances per client and per class in the MNIST dataset. The
color indicates the marginal distribution of the target.
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Fig. B.3: Number of instances per client and per class in the CIFAR-10 dataset. The
color indicates the marginal distribution of the target.

aggregate statistics and sends them to the server. Shared statistics consist in (i) the
sum of the membership degrees of the local objects to each cluster, raised to the A
power, and (ii) the weighted sum of feature values of objects based on their membership
degrees to each cluster. The server uses this information to update the centroids. The
process is repeated until the variation of centroids between two successive iterations
is less than a predefined threshold.

A thorough analysis of privacy in FedFCM is presented in our previous work [10].
Although the shared aggregated statistics do not include raw data, a semi-honest server
could attempt to reconstruct individual client data by solving a system of equations
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Fig. C.1: Sequence diagram of the FedFCM procedure, as proposed in [10].

derived from these statistics. However, this reconstruction is only feasible under spe-
cific conditions, which are rarely encountered in practice. In particular, it requires the
server to know the number of local data objects, which must also be relatively small
compared to the number of clusters. Even under this unlikely worst-case scenario,
the FedFCM procedure can still be applied safely by limiting participation to clients
whose local dataset sizes meet the necessary conditions for privacy preservation.

A distinctive feature of FedSHAP-FCM is its equivalence with the centralized
version of the algorithm, given the same initialization. In other words, by applying
FedFCM to the distribution of data among clients, the same result is obtained as if
the traditional FCM algorithm were run on the union of all data in a single centralized
base. This property, known as losslessness, was formally demonstrated in [55].

At the end of the execution, the final centroids are shared with all participants in
the federation: these represent a global summary of the distributed data and can be
used as a common knowledge base (background dataset).

Table C.1 reports the execution times required to generate the background datasets
from the various datasets used in this study, assuming execution on a server equipped
with a 10-core Intel®) i7-1265U CPUs, 16 GiB of RAM.

Appendix D Details on GAN generator

Tables D.1 and D.2 report the architecture of the GAN generator model employed for
the generation of the background, with the FedSHAP-GAN approach, for the MNIST
and for the CIFAR-10 datasets, respectively.

Appendix E  FedSHAP-GAN performance with
different training conditions

To evaluate the robustness of FedSHAP-GAN, we trained three variants of the gen-
erative model using 33%, 50%, and 100% of the local training sets, denoted as
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Table C.1: Execution times (in sec-
onds) for background dataset generation,
reported as mean and standard deviation
over 10 experiments.

Mean Standard deviation
Phoneme 0.33 0.05
Magic 2.29 0.34
Rice 0.42 0.09
PowerPlant 0.96 0.22
Concrete 0.07 0.02
Abalone 0.27 0.04

Table D.1: Architecture of the Generator Model
of the FedSHAP-GAN for the MNIST dataset.

Layer

Name Type Output Size  Activation
Input Noise Vector 100 -
1 Fully Connected 512 ReLU
2 Fully Connected 512 ReLU
3 Fully Connected 784 Tanh
Output Reshape 28x28x 1 -

Table D.2: Architecture of the Generator Model of
the FedSHAP-GAN for the CIFAR-10 dataset.

Name LayerType Output Size Activation
Input Noise Vector 100 x 1 x 1 -
1 ConvTranspose2d 64 x8x4x4 ReLU
2 BatchNorm2d 64 x8x4x4 -
3 ConvTranspose2d 64 x4x8x%x8 ReLU
4 BatchNorm2d 64 x4 x8x%x8 -
5 ConvTranspose2d 64 X 2 x 16 X 16 ReLU
6 BatchNorm2d 64 x 2 x 16 x 16 -
7 ConvTranspose2d 64 x 1 x 32 x 32 ReLU
8 BatchNorm2d 64 x 1 x 32 x 32 -
9 ConvTranspose2d 3 X 64 x 64 Tanh

FedSHAP-GANS33, FedSHAP-GAN50, and FedSHAP-GAN, respectively. The training
times are 3.3 minutes for the model with 33% data, 4.9 minutes for the model with
50% data, and 9.4 minutes for the model trained with 100% data. The resulting mod-
els were used to generate synthetic background datasets for SHAP-based explanations,
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and their effectiveness was assessed by measuring the discrepancy with the Central-
ized baseline as the Frobenius norm of the difference between the corresponding SHAP
matrices.

Figure E.1 provides a qualitative comparison of the synthetic digits produced by
each variant.

(a) FedSHAP-GAN (b) FedSHAP-GAN50 (c) FedSHAP-GAN33
Fig. E.1: An example of synthetic images generated with the three different GAN
models trained on the MNIST dataset.

As expected, the visual quality of the generated images increases with the size of
the training set. Samples generated by FedSHAP-GAN and FedSHAP-GAN50 appear
realistic and representative of the class, while FedSHA P-GAN33 shows increased noise
and reduced diversity. While GAN33’s reduced training time can be useful in resource-
constrained scenarios, it comes at the cost of lower sample quality.

Figure E.2 shows the distribution of the Frobenius norm over 10 runs for each
background dataset generation strategy.
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Fig. E.2: Boxplots of the discrepancy of the FedSHAP-GAN, FedSHAP-GAN50,
FedSHAP-GAN33 and Random approaches with respect to the centralized approach,
in terms of Frobenius norm of the pairwise difference of ® matrices.
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Scenario ‘ Generated images FID

FedSHAP-GAN(IID) 6000 192.68 £ 0.45
FedSHAP-GAN(Non-IID) 6000 204.61 £+ 0.83
FedSHAP-GAN50(Non-IID) 6000 242.37 £ 0.67
FedSHAP-GAN33(Non-IID) 6000 281.09 £ 0.52

Table F.1: FID values (average and standard deviation) cal-
culated with respect to the original images (60,000 images for
MNIST).

On the other hand, FedSHAP-GAN achieves the best explanation performance,
but requires the highest training time. These results highlight the trade-off between
computational efficiency and explanation accuracy.

The plot suggests that FedSHAP-GAN achieves the highest accuracy (i.e., lowest
discrepancy from the Centralized baseline). FedSHAP-GAN50 and FedSHAP-GAN33
exhibit a noticeable and progressively increasing drop in performance. As expected,
the Random strategy performs the worst, with significantly higher discrepancies from
the centralized approach.

Appendix F Impact of the clients’ data distributions
on FedSHAP-GAN performance

Our experiments on the image datasets were conducted under a scenario in which the
data distributions across the ten clients are Non-IID, reflecting the conditions typically
encountered in realistic FL settings. To evaluate the impact of training data distri-
butions, we also experimented with a non-realistic scenario where the ten different
clients have the same data distribution (i.e., an IID setting) of the full MNIST train-
ing dataset. Under these experimental conditions, we trained a GAN in a federated
setting (in the following, we denote this GAN as FedSHAP-GAN(IID)) and compared
its explanation accuracy against the three variants of FedSHAP-GAN described in
Appendix E, which were trained using 33%, 50%, and 100% of the local Non-IID train-
ing data. For clarity, we denoted these three variants as FedSHAP-GAN33(Non-IID),
FedSHAP-GAN50(Non-IID), and FedSHAP-GAN(Non-IID), respectively. Our com-
parison methodology consists of two steps. First, we calculated the Fréchet Inception
Distance (FID) between the images generated by the different scenarios and the orig-
inal training dataset, in order to evaluate and compare the quality of the synthetic
images. The results, obtained from ten different image background datasets generated
using ten different random seeds, are presented in Table F.1. As expected, the best FID
value is achieved in the IID scenario, followed closely by FedSHAP-GAN(Non-IID),
which utilizes 100% of local training data under non-IID conditions.

Subsequently, we calculated the Frobenius norm of the Shapely values corre-
sponding to the explanations on the test dataset to quantify the impact attributable
to the difference in the distribution settings. Figure F.1 reports the boxplots of
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the discrepancy of the FedSHAP-GAN(IID), FedSHAP-GAN(Non-IID), FedSHAP-
GANS50(Non-1ID), FedSHAP-GAN33(Non-IID) and Random approaches with respect
to the centralized approach in terms of Frobenius norm of the pairwise difference of
® matrices. As observed, the results indicate that although distributional heterogene-
ity has a measurable effect on the explanation accuracy, the overall impact remains
moderate when comparing IID and Non-IID scenarios.
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Fig. F.1: Boxplots of the discrepancy of the FedSHAP-GAN(IID), FedSHAP-
GAN(Non-IID), FedSHAP-GAN50(Non-1ID), FedSHAP-GAN33(Non-IID) and Ran-
dom approaches with respect to the centralized approach, in terms of Frobenius norm
of the pairwise difference of ® matrices.

Appendix G LDP performance with different
configurations of epsilon parameter

In our experiments, we considered two values of the privacy factor, € =1, corresponding
to a high privacy scenario, and ¢ =10, corresponding to a low privacy scenario. Here
we also report the results of the experiment performed using an intermediate value of
€ = 5. Fig. G.1 reports the results of the Frobenius norms of the pairwise difference
of ® matrices for Rice dataset, chosen as a representative of the tabular dataset. The
results obtained with e = 5 demonstrate intermediate values relative to those observed
under conditions of € = 1 and € = 10, consistent with expectations.
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Fig. G.1: Boxplots of the discrepancy of the FedSHAP-FCM, Random and LDP
approaches with respect to the Centralized approach, in terms of Frobenius norm of
the pairwise difference of ® matrices for Rice dataset.
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