Federated Learning of Explainable Artificial Intelligence Models for Predicting Parkinson's Disease Progression

José Luis Corcuera Bárcena, Pietro Ducange, Francesco Marcelloni, Alessandro Renda, Fabrizio Ruffini

Department of Information Engineering, University of Pisa

Università di Pisa

- Towards *trustworthy* AI systems
- Fed-XAI: Federated Learning of XAI models
- Case study: progress prediction of Parkinson's Disease in the federated setting
 - Experimental *setup*: dataset and data distribution scenarios
 - Experimental *results*: accuracy and interpretability of the Fed-XAI approach

The pursuit of *trustworthiness*

Federated Learning

- A *novel* learning paradigm
 - Training a *centralized model* on *decentralized data*
 - Participants share model updates, not private raw data

- FedAvg (iterates over following steps):
 - server sends global model to clients
 - *each client* updates the model using local data and sends the model back to the server;
 - server takes the average of the locally computed updates, weighted according to the number of samples

Learn how Gboard gets better

Gboard can learn from your keyboard and dictation use to help improve Gboard for everyone. Gboard can learn through techniques known as federated learning, ephemeral learning, and conventional learning

Learn about Gboard's learning models

Federated learning

A technology called federated learning helps Gboard learn new words and phrases. Federated learning doesn't send the text you speak or type to Google, but will send what it learns to Google where it will be combined with learnings from other users to create better speech and typing models. Gboard only uses federated learning while your phone charges, is connected to Wi-Fi, and isn't in use. Learn how federated learning works

The 1st World Conference on eXplainable Artificial Intelligence (xAI 2023) - July 26-28, 2023 - Lisboa, Portugal

Fed-XAI: Federated Learning of XAI models

- FL is immediately suitable for models in which the learning stage is based on optimization of differentiable global objective function (e.g., DNNs)
- Ad-hoc strategies are needed for inherently interpretable models, e.g. Takagi-Sugeno-Kang (TSK) Fuzzy Rule-Based Systems (FRBS): collection of rules in the form <*if «antecedent» then «consequent»>*

J. L. Corcuera Bárcena et al., "An Approach to Federated Learning of Explainable Fuzzy Regression Models," *IEEE Int'I Conf. on Fuzzy Systems (FUZZ-IEEE)*, 2022

Fed-XAI in healthcare

- Healthcare domain
 - **Privacy preservation** and **explainability** are imperative needs
- Focus on Horizontal FL
 - training instances from different hospitals are described by the **same set of features**

- Objective
 - Case study: prediction of Parkinson's Disease progression
 - Assessing the suitability of the Fed-XAI approach adopting TSK-FRBS as inherently interpretable model

Parkinson's Disease progression dataset

- Dataset details
 - 5875 records
 - from 42 subjects (28M,14F)
 - 22 attributes, reduced to 4 through feature selection (age, test time, Jitter(Abs), DFA)
 - For TSK-FRBS, each attribute is partitioned with five fuzzy sets (VeryLow Low Medium High VeryHigh)
- Federated setting: patients artificially distributed into 10 hospitals

PD Telemonitoring Dataset: regression task

Data distribution scenarios and evaluation strategies

- Scenario 1 (S1): i.i.d. setting: $P_h(x, y) \sim P(x, y) \quad \forall h$, where
 - $P_h(x, y)$ is the local distribution of input x and target y for hospital h
 - P(x, y) is the overall data distribution
- Scenario 2 (S2): non-i.i.d. setting: $P_i(x, y) \neq P_j(x, y)$, for any pair of hospitals (i, j)
 - Feature distribution skew for the age attribute

Experimental evaluation

- (a) Federated Learning (FL)
- (b) Local Learning (LL)
- (c) Centralized Learning (CL)

Experimental results

TSK-FRBS vs MLP-NN (opaque baseline). Average values of the metrics:

- RMSE: how much predictions deviate from the true values
- r (pearson corr coefficient): how much predictions and true values are correlated

General observations

- TSK comparable to MLP, especially in CL
- FL generally outperforms LL both in S1 and S2
 - Noticeable in Scenario 2 (non-i.i.d.), where LL is particularly prone to overfitting
 - Can be appreaciated also in Scenario 1 (i.i.d.), especially for TSK
- FL is generally outperformed by CL
 - Yet unfeasible when privacy preservation is a requirement

TSK	RMSE		r	
	train	test	train	test
S1 - LL	6.165	11.214	0.820	0.448
S1 - FL	7.907	8.657	0.677	0.622
S1 - CL	7.790	7.850	0.688	0.660
S2 - LL	3.221	91.832	0.919	-0.064
S2 - FL	13.166	14.807	0.509	0.470
S2 - CL	7.477	7.850	0.641	0.660

MLP	RMSE		r	
	train	test	train	test
S1 - LL	8.981	9.122	0.553	0.490
S1 - FL	9.492	9.192	0.472	0.476
S1 - CL	7.651	7.722	0.704	0.675
S2 - LL	5.243	18.108	0.799	0.180
S2 - FL	10.047	10.150	0.203	0.353
S2 - CL	7.477	7.657	0.599	0.682

q

Experimental results: TSK-FRBS

Fine grained analysis (individual hospitals)

- Empirical cumulative distribution function (ECDF) of the differences of RMSE
 - between FL and LL (dark blue)
 - between FL and CL (light blue)
- Pairwise Wilcoxon signed-rank test
 - There is statistical evidence of a difference in performance between FL and LL, and between FL and CL ($\alpha = 0.05$)

Interpretability

- Global (structural properties of the model): average number of rules
- Local (inference process)

Conclusions

- Al in healthcare poses urgent requirements in terms of explainability and privacy
- The Fed-XAI approach is conceived to simultaneously address the two requirements
- Case study for Parkinson's Disease progression prediction (regression task)
 - Different data distribution scenarios for the federated setting
 - Adoption of a highly interpretable TSK Fuzzy Rule-based System
 - Comparison with a MLP-NN as an opaque baseline

OpenFL-XAI released!

An extension to the open-source OpenFL framework for user-friendly support to Federated Learning of explainable by design models

https://github.com/Unipisa/OpenFL-XAI

Thanks for your attention

alessandro.renda@unipi.it

Artificial Intelligence Group

Dept. of information Engineering
University of Pisa, Italy
Website: http://ai.dii.unipi.it

Backup slides

The 1st World Conference on eXplainable Artificial Intelligence (xAI 2023) - July 26-28, 2023 - Lisboa, Portugal

Trustworthy Al

Citizens and regulators are placing increasing attention on AI trustworthiness

- Al act (EU first law on AI):
 - April 2021 first proposal
 - May 11, 2023: press release on draft negotiating mandate
 - June 15, 2023: parliament vote for endorsement
- "Ethic guidelines for trustworthy Al", (April 2019)
 - Lawful: respecting all applicable laws and regulations
 - Ethical: respecting ethical principles and values
 - Robust: both from a technical and social perspective

Interpretable Models: Fuzzy Rule-Based Systems

- The model consists of a rule-base, i.e., a collection of rules in the form *if «antecedent» then «consequent»*
- Example of rules in the form *first-order Takagi-Sugeno-Kang Fuzzy Rule-Based Systems*

Strong Fuzzy Partition

IF X_1 IS $A_{1,j_{k,1}}$... AND X_F IS $A_{F,j_{k,F}}$ THEN $y_k(\mathbf{x}) = \gamma_{k,0} + \sum_{i=1}^F \gamma_{k,i} \cdot x_i$

Experimental Setup

- Federated Feature selection
 - Let \hat{F} be the desired number of features to be selected (we set $\hat{F} = 4$)
 - Preliminary communication round
 - Each client determines the \hat{F} features to be selected based on some importance criterion (RT feature importance Gini impurity)
 - Each client transmits the candidate list with the server.
 - The server selects the most popular \widehat{F} features based on the votes of the clients
 - The server transmits the selected features to the clients
- MLP-NN hyperparam configuration:
 - Architecture: two hidden layers with 64 neurons each and ReLu as activation function
 - Loss function: Mean Squared Error (MSE)
 - Optimizer: Adam
 - FL process parameters: E=5 (local epochs per round),B=64 (mini-batch size), R=5 (federated rounds)

Case study: Parkinson's disease

Feature name	Brief description		
$\operatorname{subject}$ #	patient identifier		
age	Subject age		
sex	Subject gender '0' - male, '1' - female		
test_time	Time since recruitment into the trial.		
$motor_UPDRS$	Clinician's score, linearly interpolated		
$total_UPDRS$	Clinician's score, linearly interpolated		
Jitter[%, Abs, RAP, PPQ5, DDP]	Measures of variation in fundamental frequency		
Shimmer, Shimmer[dB, APQ3, APQ5, APQ11, DDA]	Measures of variation in amplitude		
NHR, HNR	Two measures of ratio of noise to tonal components in the voice		
RPDE	A nonlinear dynamical complexity measure		
DFA	Signal fractal scaling exponent		
PPE	A nonlinear measure of fundamental frequency vari- ation		

