

Università di Pisa

A Fuzzy Density-based Clustering Algorithm for Streaming Data

Andrea Aliperti¹, Alessio Bechini¹, Francesco Marcelloni¹, Alessandro Renda^{1,2}

> ¹University of Pisa, Dept. of Information Engineering ²University of Florence, Dept. of Information Engineering

Outline

- Motivation and goals
- Related works and baselines
- Proposed algorithm: SF-DBSCAN
- Experimental Results
- Conclusion

Importance of Mining Data Stream

Every minute ¹

- approximately 500.000 tweets are sent
- more than 4.000.000 query searches on Google are performed

Huge amount of **data streams** are generated at *very high speed* by several applications:

- Social Networks
- Sensor Networks
- Stock Market
- ... and many others

Main challenges in clustering data streams

A stream *P* is an ordered sequence of data objects $P = \{p_1, p_2, ..., p_N\}$ where each object p_i is described as an n-dimensional feature vector

- Potentially unbounded sequence of objects
- Characteristics may evolve over time due to concept drift
- Number of clusters may change over time

Motivation and Goal

Desirable properties of streaming clustering algorithms

- Effectiveness in dealing with concept drift
- Dealing with a number of clusters which may change over time
- Handling potentially unbounded sequence of objects
- Detection of arbitrary shaped clusters
- Partitioning data without prior knowledge of number of clusters
- Ability to handle noise
- Reduced sensitivity to input parameters

SF-DBSCAN: A fuzzy extension of DBScan Clustering Algorithm for Streaming Data

DBSCAN:

- Requires the definition of two parameters:
 - E: defines the *neighborhood* size
 - MinPts: number of points required for a core
- Partitions data into connected dense regions separated by sparse regions
 - Distinction between Core, Border, Noise objects
- Drawbacks:
 - High sensitivity to input parameters
 - Developed for static dataset
 - Streaming Proposal: S-DBSCAN

S-DBSCAN: Streaming DBScan

- Update the partition at each new object
 - Key idea: check the status of the new object and all the objects in its neighborhood

• Assumptions:

- Deal with a **bounded** sequence of objects
 - No memory constraints, no need for fading mechanism
- Goal: define a crisp baseline for the streaming setting

SF-DBSCAN: Streaming Fuzzy DBSCAN

- Basic idea: fuzzy membership function
 - Previously adopted only in *static* implementations

SF-DBSCAN: Streaming Fuzzy DBSCAN

- As in the original DBSCAN implementation:
 - Only objects within \mathcal{E}_{min} are considered for the election of *core objects*
- Differently from original DBSCAN implementation:
 - a border object belongs to a cluster with a membership degree that can be lower than 1, depending on its distance from the closest core object
 - One object can belong to the border of multiple clusters

Membership **Function**

• SF-DBSCAN can discover clusters with fuzzy overlapping borders

SF-DBSCAN: Streaming Fuzzy DBSCAN

- Parameters initialization: \mathcal{E}_{min} , \mathcal{E}_{max} , MinPts
- Definition of Data Structures:
 - List of already consumed objects
 - Membership degree of border objects to each cluster

Experimental Evaluation

- Datasets:
 - Synthetic datasets from GaussianMotionData¹ collection
 - Gaussian distributions with concept drift
 - Selection of 2D datasets with a limited number of objects
- Accuracy Evaluation of SF-DBSCAN compared to S-DBSCAN in terms of:
 - Visual Analysis
 - Adjusted Rand Index

1. Márquez, David G., et al. "A novel and simple strategy for evolving prototype based clustering." Pattern Recognition 82 (2018): 16-30.

Experimental Evaluation: SF-DBSCAN vs S-DBSCAN

Dataset GMD-4C2D800Linear : 4 Clusters - 2D – 800 objects

Experimental Evaluation: SF-DBSCAN vs S-DBSCAN

Dataset 3C2D7500Merge: 3Clusters - 2D - 7500 objects

Conclusions

Proposal of SF-DBSCAN: a new Streaming Fuzzy extension of DBSCAN

- Captures fuzzy clusters with overlapping borders
- Effective in dealing with concept drift
- Outperforms crisp baseline on benchmark datasets
- Future developments
 - Further extension to deal with unbounded sequences
 - Adoption of a *forgetting* mechanism: damped window model

Thank you for your attention

Alessandro Renda alessandro.renda@unifi.it Ph.D. Student – Smart Computing

University of Pisa, Dept. Information Engineering Computational Intelligence Group