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Facial Expressions of Emotions

Paul Ekman and Friesen Wallace
Constants across cultures in the face and emotion
Journal of personality and social psychology 17.2 (1971): 124.

» Universality of Facial Expressions of Emotion
* Definition of a List of Basic Emotions

{2 s

Surprise

Happy Sad Fear Anger

from http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-2011/emotion-
motivation/discussion-emotion Licensed by CC BY-SA-NC
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Automatic Facial Expression Recognition

A challenging task:
* Facial Expressions Recognition (FER)
from facial images in-the-wild

Fields of Applications:

* Human Comuputer Interaction
e Sentiment Analysis

* Behaviomedics

* Deceit Detection

* Emotional Health

e Data Analyitics
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Outline

1. Introduction to the traditional and modern approaches
to the FER problem

2. Motivations and Objectives

3. Our Experimental Setup
 FER2013 in-the-wild dataset
 Ensemble Design Strategies under different scenarios

4. Results and Conclusions
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Traditional approaches to the
multi-class Image Classification Problem

* Face Detection
Pre-Processing * Face Registration

 Hand Crafted Features
Features Extraction e Useful, Discriminative
Representation

Classification

* N-Way Classification
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Deep Learning approach

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Convolutional Neural Networks (CNNs)

* Automatic learning a hierarchical features representation
* Excellent results in a wide variety of similar problems

* Represent state-of-the-art also for FER

Drawback:
e Typically rely on large collection of labeled data for training
* Available FER datasets have limited size

Image from https://en.wikipedia.org/wiki/Convolutional neural network#/media/File:Typical _cnn.png licensed by: CC BY-SA 4.0
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Ensemble Techniques

* Widely exploited in Neural Networks
to boost classification performances
* Exploit diversity of base classifiers

—{ Aggregation

Ensemble
Output
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Ensemble Techniques

No investigation about the relative
effectiveness of different strategies
in the FER context

Ensemble

f
Aggregation Output

Licensed by CC BY-SA
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Objectives of our work

e Tackling FER problem
exploiting Ensembles of Deep Convolutional Neural Networks

e Comparative study: Assessing accuracy of two simple techniques
to generate diversity across the base classifiers of an ensemble

* Medium-size dataset: Considering two distinct scenarios:
1. Training from scratch an ad-hoc architecture
2. Fine-tuning a pre-trained state-of-the-art model
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FER-2013: Facial Expressions Dataset

* One of the largest collection of in-the-wild facial images
* Consisting in 35.876 images from 7 classes:

Neutral 6197

Anger 4945

Training Set 28699 Disgust 547
Validation Set 3588 Fear 5121
Test Set 3589 Happiness 8988
Sadness 6076

Surprise 4001

* Average Human Accuracy: 65%
» State-of-the-art Accuracy: 75.2% 1]

[1] C. Pramerdorfer and M. Kampel, “Facial expression recognition using convolutional neural networks: State of the art,” arXiv preprint
arXiv:1612.02903, 2016
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First Scenario: CNN10-S

* Training from scratch an Ad Hoc Architecture
* 10 layers, ~ 1.7M parameters
* Mimics VGG-B architecture, inspired to [1]

CONV_1_1: 3x3 CONV 32
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Second Scenario: VGG16-FT

* Fine-tuning a Pretrained Model
* VGG16 architecture
e 16 layers, “130M parameters
* Pretrained on a Face Recognition dataset (Y of 2.6M images

A) Remove original output layer. Add custom output layer (7 units)
B) Train the output layer. Freeze all hidden layers
C) Fine-tune the final (green) layers. Freeze the white layers
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0O.M. Parkhi et al., Deep face recognition. BMVC. Vol. 1. No. 3. 2015.
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Two Ensemble Design Strategies: SE - PS

* Fixed size ensemble of nine networks
* Three repetitions for each strategy and for each scenario

Seed Strategy (SE) Preprocessing Strtegy (PS) [1!
SEED 1 NET 1 SEEED1 | SEEED2 | SEED3
SEED 2 NET 2 DEFAULT
SEED 3 NET 3 Ej NET 1 NET 2 NET 3
57
SEED 4 NET 4
SEED5 | NETS HISTEQ
NET 4 NET 5 NET 6
SEED 6 NET 6
SEED 7 NET 7
SEED8 | NETS8 NET 7 NET 8 NET 9

SEED 9 NET 9

[1] B.-K. Kim et al., Fusing aligned and non-aligned face information for automatic affect recognition in the wild: A deep learning approach,
Proc. Of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1499{1508. doi:10.1109/CVPRW.2016.187.
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Experimental Results
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The higher variability among networks,
the higer ensemble gain
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Experimental Results

e CNN10-S e VGG16-FT
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* CNN10 trained from scratch outperforms the fine tunend
VGG16 model

* in terms of Base Classifiers
* |n terms of Ensemble Classifiers
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Increasing the number of base classifiers

» 3 repetitions for each strategy, for each scenario =2 27 networks

CNN10-S VGG16-FT
—— SE +— PS —F— SE 3 PS
___f——fﬁd_ﬂi -+
F S
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18 27 9 18 27
Number of base classifiers Number of base classifiers
* In general, no significant benefit when increasing
ensemble size
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Conclusions

e Task: in-the-wild Facial Expression Recognition
* Assessing the accuracy of different approaches
of Ensemble Learning:
* Two ensemble design strategies (SEED vs PREPROCESSING)
achieve comparable results
* Two training scenarios (CNN10-S vs VGG16-FT):
Training an ad hoc model from scratch
is an appropriate choice in the considered setting

* Further investigation:
* Other state-of-the-art models
e Other pretraining datasets
* Other factors of variation in the ensemble
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Thank you for your attention

Alessandro Renda
PhD program in Smart Computing
Universities of Pisa, Firenze, Siena

Email: alessandro.renda@unifi.it

22/05/2021

19



