

Assessing Accuracy of Ensemble Learning for Facial Expression Recognition

Alessandro Renda^{1,2}, Marco Barsacchi^{1,2}, Alessio Bechini¹, Francesco Marcelloni¹

¹University of Pisa, Dept. Of Information Engineering

²University of Florence, Dept. Of Information Engineering

Facial Expressions of Emotions

Paul Ekman and Friesen Wallace **Constants across cultures in the face and emotion** *Journal of personality and social psychology* 17.2 (1971): 124.

- Universality of Facial Expressions of Emotion
- Definition of a List of **Basic Emotions**

Happy

Sad

Fear

Disgust

from <u>http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-00sc-introduction-to-psychology-fall-2011/emotion-motivation/discussion-emotion</u> Licensed by <u>CC BY-SA-NC</u>

22/05/2021

Automatic Facial Expression Recognition

A challenging task:

 Facial Expressions Recognition (FER) from facial images in-the-wild

Fields of **Applications**:

- Human Comuputer Interaction
- Sentiment Analysis
- Behaviomedics
- Deceit Detection
- Emotional Health
- Data Analyitics

Outline

- 1. Introduction to the traditional and modern approaches to the FER problem
- 2. Motivations and Objectives
- 3. Our Experimental Setup
 - FER2013 in-the-wild dataset
 - Ensemble Design Strategies under different scenarios
- 4. Results and Conclusions

Traditional approaches to the multi-class Image Classification Problem

- Face Detection
- Face Registration

- Hand Crafted Features
- Useful, Discriminative Representation

N-Way Classification

Deep Learning approach

Convolutional Neural Networks (CNNs)

- Automatic learning a hierarchical features representation
- Excellent results in a wide variety of similar problems
- Represent state-of-the-art also for FER

Drawback:

- Typically rely on *large* collection of labeled data for training
- Available FER datasets have limited size

Image from https://en.wikipedia.org/wiki/Convolutional_neural_network#/media/File:Typical_cnn.png licensed by: CC BY-SA 4.0

Ensemble Techniques

- Widely exploited in Neural Networks to **boost classification performances**
- Exploit diversity of base classifiers

Ensemble Techniques

Objectives of our work

- Tackling FER problem exploiting Ensembles of Deep Convolutional Neural Networks
- Comparative study: Assessing accuracy of two simple techniques to generate diversity across the base classifiers of an ensemble
- Medium-size dataset: Considering two distinct scenarios:
 - 1. Training from scratch an ad-hoc architecture
 - 2. Fine-tuning a pre-trained state-of-the-art model

FER-2013: Facial Expressions Dataset

- One of the largest collection of in-the-wild facial images
- Consisting in **35.876 images** from **7 classes**:

			Neutral	6197
			Anger	4945
Training Set	28699		Disgust	547
Validation Set	3588		Fear	5121
Test Set	3589		Happiness	8988
			Sadness	6076
			Surprise	4001

- Average Human Accuracy: 65%
- State-of-the-art Accuracy: 75.2% ^[1]

[1] C. Pramerdorfer and M. Kampel, "Facial expression recognition using convolutional neural networks: State of the art," arXiv preprint arXiv:1612.02903, 2016

[1] C. Pramerdorfer and M. Kampel, "Facial expression recognition using convolutional neural networks: State of the art," arXiv preprint arXiv:1612.02903, 2016

Second Scenario: VGG16-FT

• Fine-tuning a Pretrained Model

- VGG16 architecture
- 16 layers, ~130M parameters
- *Pretrained* on a Face Recognition dataset ^[1] of 2.6M images
- A) Remove original output layer. Add custom output layer (7 units)
- B) Train the output layer. Freeze all hidden layers
- C) Fine-tune the final (green) layers. Freeze the white layers

O.M. Parkhi et al., Deep face recognition. BMVC. Vol. 1. No. 3. 2015.

Two Ensemble Design Strategies: SE - PS

- Fixed size ensemble of nine networks
- Three repetitions for each strategy and for each scenario

Seed Strategy (SE)

Preprocessing Strtegy (PS) ^[1]

SEED 1	NET 1	
SEED 2	NET 2	
SEED 3	NET 3	
SEED 4	NET 4	
SEED 5	NET 5	
SEED 6	NET 6	
SEED 7	NET 7	
SEED 8	NET 8	
SEED 9	NET 9	

	SEEED 1	SEEED 2	SEED 3
DEFAULT	NET 1	NET 2	NET 3
HISTEQ	NET 4	NET 5	NET 6
INOR	NET 7	NET 8	NET 9

[1] B.-K. Kim et al., Fusing aligned and non-aligned face information for automatic affect recognition in the wild: A deep learning approach, Proc. Of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1499{1508. doi:10.1109/CVPRW.2016.187.

Experimental Results

- Diverse espect and a potential ing the down of her where the states es
 - The higher variability among networks, the higer ensemble gain

Experimental Results

- CNN10 trained from scratch outperforms the fine tunend VGG16 model
 - in terms of Base Classifiers
 - In terms of Ensemble Classifiers

Increasing the number of base classifiers

• **3 repetitions** for each strategy, for each scenario \rightarrow 27 networks

• In general, **no significant benefit** when increasing ensemble size

Conclusions

- Task: in-the-wild Facial Expression Recognition
- Assessing the accuracy of different approaches of Ensemble Learning:
 - Two ensemble design strategies (SEED vs PREPROCESSING) achieve comparable results
 - Two training scenarios (CNN10-S vs VGG16-FT): Training an ad hoc model from scratch is an appropriate choice in the considered setting
- Further investigation:
 - Other state-of-the-art models
 - Other pretraining datasets
 - Other factors of variation in the ensemble

Thank you for your attention

Alessandro Renda PhD program in Smart Computing Universities of Pisa, Firenze, Siena Email: alessandro.renda@unifi.it

