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A B S T R A C T

The quest for trustworthiness in Artificial Intelligence (AI) is increasingly urgent, especially in the field of next-
generation wireless networks. Future Beyond 5G (B5G)/6G networks will connect a huge amount of devices
and will offer innovative services empowered with AI and Machine Learning tools. Nevertheless, private user
data, which are essential for training such services, are not an asset that can be unrestrictedly shared over the
network, mainly because of privacy concerns. To overcome this issue, Federated Learning (FL) has recently
been proposed as a paradigm to enable collaborative model training among multiple parties, without any
disclosure of private raw data. However, the initiative to natively integrate FL services into mobile networks
is still far from being accomplished. In this paper we propose a novel FL-as-a-Service framework that provides
the B5G/6G network with flexible mechanisms to allow end users to exploit FL services, and we describe its
applicability to a Quality of Experience (QoE) forecasting service based on a vehicular networking use case.
Specifically, we show how FL of eXplainable AI (XAI) models can be leveraged for the QoE forecasting task,
and induces a benefit in terms of both accuracy, compared to local learning, and trustworthiness, thanks to the
adoption of inherently interpretable models. Such considerations are supported by an extensive experimental
analysis on a publicly available simulated dataset. Finally, we assessed how the learning process is affected by
the system deployment and the performance of the underlying communication and computation infrastructure,
through system-level simulations, which show the benefits of deploying the proposed framework in edge-based
environments.
1. Introduction

The next generation of mobile networks is envisioned to leverage
the most advanced methodologies from the field of Artificial Intelli-
gence (AI), in order to support users running innovative applications
and services, as well as to realize powerful and reliable in-network
functionalities. Indeed, the design of the upcoming 6G network archi-
tecture is tightly intertwined with AI, as demonstrated by the activities
carried out by major joint research efforts around the world, includ-
ing European Union projects such as DEDICAT 6G1, 6G Brains2 and
Hexa-X3 [1].
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In fact, AI features are expected to be integrated within the mobile
network, in order to improve a wide range of management tasks, such
as orchestration of Virtual Network Functions, as well as user-plane
operations, such as augmenting the capabilities of applications run by
the users of the mobile network. One of the vertical sectors that are
likely to be most impacted by these developments is the automotive
field: for example, vehicular applications relying on video streaming
transmitted over the network (e.g., see-through [2] or tele-operated
driving operations [3]) may leverage AI to predict possible degradation
of the Quality of Experience (QoE) based on Quality of Service (QoS)
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metrics, in order to take countermeasures before the degradation oc-
curs (e.g., avoiding dangerous maneuvers). The suitability of machine
learning (ML) approaches to address the QoS-QoE prediction task has
been widely investigated in the last few years [4–6]. However, just
optimizing the accuracy of these systems is no longer enough and most
of the efforts nowadays aim to enhance their trustworthiness.

B5G/6G networks will provide service to a very large number of
devices, each one equipped with advanced sensing capabilities. This
will generate a massive volume of valuable data, that can be exploited
to build accurate AI models through ML. Data generated or sensed by
users can be conveyed to the network and used as input to algorithms
employed for learning AI models. These algorithms may possibly be
executed within the network itself, which is foreseen to have in-built
edge computing capabilities. However, the exploitation of user data
to feed training algorithms at the network side poses concerns about
privacy. For this reason, decentralized approaches that consider privacy
as a requirement are rapidly emerging as potential candidates to be
used in B5G/6G networks. Federated Learning (FL) [7] represents a
major technological enabler in this regard, as it consists in a learning
paradigm that allows multiple parties (i.e., data owners) to collab-
oratively learn an AI model without any disclosure of private raw
data. The key intuition behind FL is that the training phase of AI
models takes place locally, where data is generated, and models, rather
than private data, are shared with a central orchestrator whose role
is to aggregate them to produce a global model. As a consequence,
FL paradigm becomes also particularly valuable in cases where data
centralization for AI model training is ruled out due to intolerable
communication and computation overhead.

While FL is meant to fulfill the privacy requirement, which is
crucial for enhancing user’s trust in AI services, making AI trustworthy
requires one to explore other avenues at the same time [8]: indeed,
the explainability of such AI systems is equally relevant and is the focus
of the broad discipline of eXplainable AI (XAI) [9]. In a nutshell, an
AI model can be defined explainable if it produces details or reasons
to make its functioning clear and easy to understand; this property is
inherent in so-called transparent models, such as decision trees or rule-
based systems, and can be pursued for the so-called opaque models,
such as deep neural networks and ensembles, through the adoption of
post-hoc explainability techniques.

Notably, most renowned applications of FL exploit opaque mod-
ls [10] as their mainstream guise is based on the collaborative opti-
ization of a global differentiable objective function through adequate

ariants of stochastic gradient descent. As an example, FL of Deep
eural Networks is exploited for query suggestion improvement on
oogle Keyboard. However, it is often the case that other classes of
odels are preferable due their transparency and/or because they

an still achieve competitive performance, e.g., when data comes in
abular form [11]. Thus, devising FL approaches for such models, and
pecifically XAI models, is currently gaining increasing attention [12–
5]; notably, the concept of Federated XAI (Fed-XAI in short) has been
ecently awarded as key innovation by the EU Innovation Radar4 and its
pplicability to an automated-vehicle networking use case in B5G/6G
ystems has been recently envisioned [16].

One of our previous papers [17] presented a preliminary study on
ow XAI models can be leveraged to address the problem of QoE fore-
asting in B5G/6G networks. Such work was carried out by exploiting
realistic dataset including QoS and QoE metrics for a video-streaming
pplication, generated by using end-to-end, system-level simulations of
5G network. Moreover, the basic concepts required for running FL
ithin the B5G/6G network were briefly introduced.

This work takes a step forward by presenting a complete framework
nabling FL-related services within future B5G/6G networks, according
o the as-a-service paradigm. In B5G/6G networks, applications run by

4 https://www.innoradar.eu/innovation/45988
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different mobile users have different quality requirements, and may
exploit AI in different ways to improve the features they offer. In
this context, FL combines the benefits of a potentially large number
of participants (i.e., the mobile users) generating useful data to train
AI models, while preserving the privacy of such data at the same
time. Since different applications may require AI models with different
objectives and requirements at possibly different times, the network
should be able to provide flexible FL services to be instantiated when
they are needed. The proposed Federated Learning as-a-service (FLaaS)
framework allows mobile users to discover AI models made available
by the network for several types of applications (e.g., QoE prediction
for video-streaming applications), obtain them from the network and
use them for their inference tasks. To this aim, the framework provides
the mobile users with the protocols to join (and leave) a federation,
and participate in the training of the corresponding (X)AI model, by
exchanging local and global versions of the latter with the aggregation
entity within the network.

Moreover, B5G/6G networks will provide connectivity to devices
with different computing capabilities, ranging from high-end computers
to resource-rich connected vehicles, to low-power IoT devices. The
latters would not be able to use FL due to their computing constraints.
Enabling FLaaS, some degrees of freedom exist in terms of the place-
ment of its components within a network architecture. The central
coordination infrastructure can be deployed at the edge of the network,
i.e. exploiting the ETSI Multi-access Edge Computing (MEC) architec-
ture. Moreover, distributed functions (e.g., user training modules) can
be placed either at the user device itself, or offloaded to the edge as a
dedicated application, hence allowing users with limited computation
capabilities (e.g., IoT devices) to participate in FL operations.

There are many different applications that may be run on a 6G
network enabled with our FLaaS framework. Beside the ones related
to the automotive world – such as QoS prediction for cooperative or
teleoperated driving, we can mention enhanced living for impaired peo-
ple, where image acquisition via wearable cameras and sensors can be
processed to identify obstacles or hazards, or assistance to individuals
– e.g., identification of specific individuals (e.g., an unattended child)
in a crowd. More applications and use cases are described, for instance,
in [18].

The proposed approach is also validated through an extensive exper-
imental analysis: we evaluate the performance of an XAI model learned
in a federated fashion on a publicly available QoS-QoE dataset. Fur-
thermore, the FL scheme is compared with two baselines: centralized
learning and local learning. The former violates the requirement of pri-
vacy, but it allows us to quantify how much preserving it costs in terms
of model accuracy; the latter, instead, guarantees privacy, but does not
exploit any form of shared knowledge among participants. Accordingly,
comparing against it allows us to shed light on the modeling benefit
induced by the federated approach compared to local learning.

To summarize, the contributions of this paper are the following:

• we employ a state-of-the-art approach for FL of XAI models
to tackle the problem of forecasting QoE of video streaming
applications run by UEs in an automotive use case;

• we propose the FLaaS framework that provides the B5G/6G net-
work with flexible mechanisms to allow mobile users to exploit
FL services, and discuss the issues related to the placement of its
components;

• we present results on the accuracy and the explainability of the
XAI models obtained by our proposed FL algorithm on the QoE
forecasting dataset;

• we evaluate the proposed FLaaS framework, and specifically the
running time of the learning process, using a realistic end-to-end
simulation environment that accurately models both communica-
tion and computation.

https://www.innoradar.eu/innovation/45988
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The rest of this paper is organized as follows: Section 2 provides
the basic concepts about FL and XAI, and reviews the related work.
Section 3 presents the algorithms we designed to enable the FL of
XAI models, whereas Section 4 describes the FLaaS framework. We
describe the case study and the dataset we produced to carry out our
experiments in Section 5. The algorithms and the impact of the network
on the proposed framework are evaluated in Section 6 and Section 7,
respectively. Section 8 concludes our work.

2. Related work

Synergy between AI and wireless networks has been widely in-
vestigated [19], even in terms of challenges and opportunities for
future B5G/6G networks [20,21]. In this section, we review the most
relevant works in two fields that are deemed crucial for achieving
trustworthiness in AI-empowered next generation wireless networks:
FL and XAI. Moreover, we discuss existing works related to network
protocols for FL.

2.1. Federated learning for wireless networks: applications and protocols

The adoption of FL in wireless networks has recently gained a signif-
icant momentum. In a recent review, Niknam et al. [22] discussed some
key potential applications of FL in 5G networks: for example, FL may
play a crucial role in enabling dynamic access to the spectrum, avoiding
the disclosure of privacy-sensitive data, such as spectrum occupancy
data, device nonlinearity information, and detection of abnormal sig-
nals (e.g., interference). Also, authors envision applicability of FL in the
5G core (5GC) network: FL may come into play in supporting collabora-
tive learning over vertically partitioned data (i.e., different parties hold
information about different features of the same instances). Specifically,
each entity of the 5GC structure handles a subset of the features of
a dataset related to the overall users in the network. For example,
session management function handles session establishment (i.e., IP
address allocation, traffic routing), while access mobility management
function handles mobility information. The adoption of FL paradigm
for collaborative data analysis by the network data analytics function
(NWDAF) can mitigate privacy and security issues, compared to raw
data sharing.

To the best of our knowledge, however, most of these visions have
not yet found application in real-world scenarios. A recent proposal in
this direction is represented by the work described in [23]: authors
propose an approach based on Federated Support Vector Machine
for mobile packet classification and, specifically, to predict personally
identifiable information exposure and requests. Their approach is val-
idated using three real-world datasets. In [24], FL of neural networks
is exploited for Reference Signal Received Power (RSRP) estimation,
and is enhanced with a sophisticated privacy-preserving mechanism to
withstand membership inference attacks by malicious users.

Two challenges of FL in edge networking scenarios are discussed
in [25]: model-weighting, i.e., selecting the weights given to different
local models in the averaging phase, and node-dropping, i.e., the
strategy for excluding some nodes from the FL process. Experiments
on benchmark datasets, based on a 4-layer NN, reveal that decision
making strategies cannot disregard the evaluation of the quality, and
not only the quantity, of local data. An orthogonal challenge has been
investigated in [26], stemming from the observation that edge ML has
communication and on-device resource constraints: authors proposed
a dynamic resource allocation strategy based on stochastic Lyapunov
optimization, enabling adaptive FL at the network edge.

Within the growing interest in FL as a paradigm for privacy preser-
vation, however, the aspect of explainability is generally neglected:
most solutions revolve around FL of opaque or black-box models and
thus cannot be considered fully trustworthy.

Another aspect to be taken into consideration relates to the com-
munication between the distributed participants and the central ag-
gregator to build an AI model. Communication protocols enabling the
358
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exchange of the information between such entities play a crucial role
in determining the effectiveness and performance of the FL approach.

The authors of [27] provide a survey summarizing the main re-
search efforts in defining the hardware and software platforms required
to deploy FL, as well as the network protocols that have been proposed
to enable the information exchange between entities. In this regard, the
existing works consider wireless networks as the main usage scenario
for FL, and they mainly focus on the procedures that are needed to
send and receive local and global models, as well as the algorithms
to perform the so-called client selection, i.e. choosing the most suitable
clients that will participate in the training process. Protocols addressing
security and privacy aspects are also discussed. Moreover, the survey
lists the main use cases and applications that can benefit from the
employment of FL.

In [28], authors provide an overview about the interplay between
FL and Edge Computing. In particular, some challenges that can be
encountered when implementing FL at the edge of the network are
discussed, such as the communication cost and resource allocation.
Although the above works are informative about the challenges related
to the communication protocols required to enable FL, it can also be
noted that some aspects have not been widely investigated by the state
of the art. For example, the problem of discovering available FL services
and the procedures required to join them have not been discussed.
In general, to the best of our knowledge, the idea of considering the
network as a provider of FL services – e.g., according to the as-a-service
paradigm – has not been proposed so far. Likewise, quantifying the
impact of the radio access network on FL and the benefits of using MEC
are still open research issues.

Our work aims to provide a comprehensive and flexible framework
that covers all the aspects required by the entities involved in an FL
process, from service discovery to training and service termination,
by also taking into account different deployment options, such as
exploiting applications at the edge of the network to perform the local
training of the models.

2.2. Explainable artificial intelligence for wireless networks

Some recent works [29,30] have reviewed the current status of
AI-enabled cellular networks. Specifically, authors in [29] provide an
overview of the key thrusts in AI for wireless communication from
both an industry and a research perspective. The former category of
thrusts include NWDAF specification for data collection and analyt-
ics defined by 3GPP, and remarkable initiatives such as the O-RAN
alliance5 and the ETSI Industry Specification Group on Experiential
Networked Intelligence6. The latter category includes several examples
of successful adoption of AI techniques to the PHY, MAC and Net-
work layers, with applications ranging from channel estimation and
prediction, to dynamic spectrum access and resource management and
scheduling. Interestingly, the overview of the authors highlights that,
in the last few years, the most prominent tools adopted in this context
rely on opaque models based on neural networks. A similar overview
is presented in [30], with a specific focus on the trustworthiness of
AI/ML techniques. This survey reports some representative examples
of the adoption of AI methods in wireless communication along with
the degree of explainability that is generally accorded to the methods
themselves. Most of the employed approaches feature a level of explain-
ability that is defined as none, very low and low. Among the solutions
with a medium degree of explainability, authors in [31] propose a
Belief Network for passive in-situ diagnosis of Wireless Sensor Networks
based on a lightweight packet marking scheme; authors in [32] pro-
pose a Bayesian Learning approach (Expectation Propagation) within

5 https://www.o-ran.org/, accessed November 2022.
6 https://www.etsi.org/technologies/experiential-networked-intelligence,

ccessed November 2022.

https://www.o-ran.org/
https://www.etsi.org/technologies/experiential-networked-intelligence
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Table 1
Overview of related works.

Ref Contribution FL XAI QoE

[22] Motivation, opportunities, challenges, potential applications of FL in 5G ✓

[23] FL of support vector machine for mobile packet classification ✓

[24] FL of NNs for Reference Signal Received Power (RSRP) estimation ✓

[25] Challenges of FL in edge networking scenarios; experiments on benchmark datasets ✓

[26] Dynamic resource allocation strategy enabling adaptive FL at the network edge; experiments on benchmark datasets ✓

[27] A survey on FL enabling technologies, protocols, and applications ✓

[28] Survey of FL in mobile edge networks ✓

[31] Passive in-situ diagnosis of Wireless Sensor Networks based on a lightweight packet marking scheme ✓

[32] Active learning of interference channels in cognitive radio networks ✓

[33] Multimedia QoE classification with decision trees ✓ ✓

[34] Multimedia QoE classification with random forests ✓ ✓

[35] Multimedia QoE classification with support vector machine ✓ ✓

[4] Multimedia QoE classification with bayesian networks ✓ ✓

[5] Multimedia QoE classification with tree-based models ✓ ✓

[15] Multimedia QoE forecasting with regression tree ✓ ✓

[36] Multimedia QoE forecasting with Hoeffding regression tree ✓ ✓

Our Multimedia QoE forecasting with Federated TSK FRBS ✓ ✓ ✓
a constrained dynamic programming framework for active learning of
interference channels in cognitive radio networks. The only approach
that features a high degree of explainability is described in [33]:
a decision tree model is used to predict in real-time and with low
complexity the QoE in wireless multimedia communications; a forward
error correction scheme leverages the prediction to prevent quality
degradation.

We also report that several works recently proposed to address
the QoE prediction problem with AI tools: prediction of video stalling
or starvation under various (simulated) network conditions has been
tackled mainly with ‘‘gray-’’ or ‘‘black-box’’ models, i.e. Random For-
est [34], Support Vector Machine [35] and Bayesian Networks [4].

In one of our recent works, [5], we describe an experimental
campaign on the dataset presented in [4], aimed at investigating the
trade-off between accuracy and explainability in tree-based models:
results showed that multi-way Decision Trees, enhanced with concepts
from fuzzy set theory, ensure high level of interpretability and achieve
competitive levels of performance compared to Random Forests. The
analyses performed in [4,5], however, are based on aggregate QoS and
QoE metrics, and neglect the streaming nature of such measurements.

The present work stems from a preliminary investigation [17],
which revolves around a novel dataset of QoS-QoE timeseries obtained
through realistic 5G network simulations. The preliminary experimen-
tal analysis showed that an inherently explainable model, i.e., Regres-
sion Tree (RT), can be regarded as a suitable solution to address even
the forecasting task on QoE timeseries. Later, in [36], we resorted to
the same dataset to investigate the performance of the Hoeffding RT, a
variant of RT tailored for incremental learning over streaming data.

However, to the best of our knowledge, none of the previous works
has addressed the challenge of privacy preservation: conversely, all
of them rely on the strong assumption that a global training set can
be built, possibly by collecting data produced by different peripheral
nodes.

Table 1 summarizes the related works discussed in this section,
emphasizing their relevance to the three main areas covered in our
work (FL, XAI, QoE): our proposal to adopt FL of XAI models to tackle
the QoE forecasting problem, unprecedented in the literature, repre-
sents indeed a leap forward towards trustworthy AI in next generation
wireless networks.

3. Background: An approach for federated learning of XAI models

A possible approach to achieve explainability is through the adop-
tion of inherently interpretable models. In this regard, Decision Trees
(DTs) and Rule-Based Systems (RBSs) are generally considered among
the most transparent models, as their operation and characteristics
359

an be easily understood by a human. For both models, in fact, the
inference strategy is traced back to the evaluation of if-then rules,
which is quite akin to some human rational processes. In this paper we
exploit a particular type of RBSs, namely Takagi–Sugeno–Kang Fuzzy
RBSs (TSK-FRBSs) [37], which are particularly useful in dealing with
regression tasks for two reasons: on one hand they have proven to
achieve high modeling capability of complex systems, on the other
hand the adoption of concepts from fuzzy set theory may further
enhance both model performance in scenarios with some degree of
noise, and interpretability, thanks to a natural linguistic representation
of numeric variables.

In this section we first provide some preliminaries about TSK-FRBSs,
and then we recall a recently proposed approach for FL of TSK-FRBSs,
which is employed in the experimental analysis discussed in this paper.

3.1. Takagi–Sugeno–Kang Fuzzy rule based systems: Preliminaries

For the purpose of describing the key concepts of the model, we re-
fer to the centralized scenario, in which the learning stage is performed
based on a dataset available at a single location.

Let 𝐗 =
{

𝑋1, 𝑋2,… , 𝑋𝐹
}

be a set of input variables and 𝑌 the
output variable. A generic instance of the dataset is in the form 𝐱 =
[𝑥1, 𝑥2,… , 𝑥𝐹 ]𝑇 and has an associated target value 𝑦. Let 𝑈𝑓 , 𝑓 =
1, 2,… , 𝐹 , be the universe of discourse of variable 𝑋𝑓 . Let 𝑃𝑓 =
{

𝐴𝑓,1, 𝐴𝑓,2,… , 𝐴𝑓,𝑇𝑓

}

be a fuzzy partition over 𝑈𝑓 with 𝑇𝑓 fuzzy sets,
each labeled with a linguistic term. Finally, let 𝐾 be the number of
rules in the rule base. The generic 𝑘th rule is in the form:

𝑅𝑘 ∶ 𝐈𝐅 𝑋1 𝑖𝑠 𝐴1,𝑗𝑘,1 𝐀𝐍𝐃 … 𝐀𝐍𝐃 𝑋𝐹 𝑖𝑠 𝐴𝐹 ,𝑗𝑘,𝐹

𝐓𝐇𝐄𝐍 𝑦𝑘 = 𝑓 (𝐱)
(1)

where 𝑗𝑘,𝑛 ∈
[

1, 𝑇𝑓
]

identifies the index of the fuzzy set of partition
𝑃𝑓 . In zero order TSK-FRBS the consequent function of the generic rule
𝑅𝑘 is a constant value, namely 𝑦𝑘 = 𝛾𝑘,0. In first order TSK-FRBS the
consequent function of the generic rule 𝑅𝑘 is a linear combination of
the elements of 𝐱, parameterized by the vector of coefficients 𝜸𝒌 =
{

𝛾𝑘,0, 𝛾𝑘,1,… 𝛾𝑘,𝐹
}

: in this case the output is evaluated as 𝑦𝑘 = 𝛾𝑘,0 +
∑𝐹

𝑖=1 𝛾𝑘,𝑖 ⋅ 𝑥𝑖.
When an input pattern 𝐱𝑖 is fed to a TSK-FRBS, the strength of

activation of each rule is computed as follows:

𝑤𝑘(𝐱) =
𝐹
∏

𝑓=1
𝜇𝑓,𝑗𝑘,𝑓 (𝑥𝑓 ) for 𝑘 = 1,… , 𝐾 (2)

where 𝐾 is the number of rules in the rule base and 𝜇𝑓,𝑗𝑘,𝑓 (𝑥𝑓 ) is
the membership degree of 𝑥𝑓 to the fuzzy set 𝐴𝑓,𝑗𝑘,𝑓 . Once the acti-
vated rules are identified, two inference strategies are viable, namely
weighted average and maximum matching. In the weighted average
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Fig. 1. An example of strong triangular uniform fuzzy partition with three fuzzy sets.

strategy, the output depends on the 𝐾 outputs obtained from as many
rules. Formally:

�̂�(𝐱) =
𝐾
∑

𝑘=1

(

𝑤𝑘(𝐱)
∑𝐾

ℎ=1 𝑤ℎ(𝐱)

)

⋅ 𝑦𝑘(𝐱) (3)

In the maximum matching strategy, the output is determined by
sing the rule with the highest strength of activation. Evidently, this
trategy entails a higher level of interpretability, compared to the
eighted average one, as the output can be motivated by looking at
single rule.

The most popular approach to learn TSK-FRBS consists of two
tages: structure identification and model parameter identification. In
he former stage, the number of rules and the conditional part of the
ules are determined; this is typically done either with grid-partitioning
f the input space or exploiting fuzzy clustering methods [38]. In
he latter stage, with fixed antecedents, parameters of the local linear
odels are learned by pseudo-inversion or by applying the recursive

east square method. Alternative approaches have been proposed for
ptimizing TSK-FRBSs, including genetic algorithms [39] or mini batch
radient descent [40,41].

In the following, we describe the procedure proposed in [14] and
dopted in our experimental analysis. The antecedent parameters are
etermined as follows. First, a strong triangular uniform fuzzy partition
s defined on each normalized input variable: an example of such
artition with three fuzzy sets, respectively labeled as low, medium and
igh, is shown in Fig. 1.

Then, for each variable value 𝑥𝑓 of each training sample, we com-
ute the membership degree to the fuzzy sets of the uniform fuzzy
artition defined on 𝑋𝑓 : a condition ‘‘𝑋𝑓 𝑖𝑠 𝐴𝑓,𝑗𝑘,𝑓 ’’ is added to the

antecedent, where 𝐴𝑓,𝑗𝑘,𝑓 is the fuzzy set with the maximum member-
ship degree. The antecedent of a rule is finally obtained as conjunction
of the conditions associated with a sample. The same antecedent can be
generated by a number of samples. In this case, only one antecedent is
considered in the following steps. Once rule antecedent parameters are
determined, the corresponding consequent parameters are estimated
through the weighted least-squared method applied to all the samples
which activate the antecedent. More details on the method adopted for
generating single local models can be found in [14].

3.2. A federated approach for learning Takagi–Sugeno–Kang Fuzzy rule
based systems

An approach for FL of interpretable TSK-FRBSs has been recently
presented in [14]. A schematic overview is given in Fig. 2.

The process involves the following actors: 𝑁 FL Local Managers
(FLLMs), each associated with a given data owner, and one FL Global
Manager (FLGM), that is the central entity responsible for model aggre-
gation. Such a setting is consistent with standard FL over centralized
communication topology: unlike standard FL, however, we consider FL
of XAI models. The proposed Fed-XAI approach is supported by the
novel FLaaS framework: a detailed description of the framework and
the involved entities will be provided in Section 4.

The one-shot procedure for generating the Federated TSK-FRBS
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encompasses the following four steps:
(1) the FLGM transmits the configuration parameters to the learning
modules;

(2) the learning module of each FLLM generates the local TSK-FRBS
based on private data;

(3) each FLLM transmits the local TSK-FRBS to the FLGM;
(4) the FLGM generates the Federated TSK-FRBS by aggregating the

local models.

In the first step, the configuration parameters include all the rel-
evant information for generating consistent local models (e.g., the
domain of definition of the attributes for data normalization and the
number of fuzzy sets for fuzzy grid partitioning of the input space).
In the second step, a TSK-FRBS is generated by each local learning
module, according to the procedure reported in Section 3.1. Once local
rule bases are transmitted to the FLGM (third step), the aggregation
procedure is performed (fourth step): first, the FLGM generates a
preliminary global rule base as the juxtaposition of the rules collected
from the clients. Then the rule base is refined by solving rule conflicts
(rules with the same antecedent but different consequents). A conflict
is handled by replacing the set of conflicting rules with a single rule
with the same antecedent and a novel consequent, obtained by aver-
aging the coefficients of the consequents of the conflicting rules. This
averaging operation is weighted, as each rule has an associated rule
weight computed as the harmonic mean of its support (i.e., how much
a rule is activated by the sample of the training set), and confidence
(i.e., average quality of the prediction of the rule measured on the
training set).

4. A framework for federated learning as a service

B5G/6G networks are envisaged to provide User Equipments (UEs)
with procedures to take advantage of intelligent services (e.g., forecast-
ing of QoE) by exploiting AI models that are built according to the
FL paradigm. This can be realized by endowing the B5G/6G network
with an FLaaS framework that allows UEs to discover FL services made
available by the network, obtain the corresponding ‘‘federated’’ AI
model and, possibly, participate in training it. This section describes
the FLaaS framework, including its modules, protocols and functions.
This framework has been designed in the context of the Hexa-X EU
project [42], and a proof-of-concept implementation has been devel-
oped on top of the Simu5G OMNeT++-based public simulator [43]. The
FLaaS framework will be evaluated in Section 7.

4.1. Description of the framework

In this section, we first present the main components of the frame-
work, also providing some taxonomy. Then, we describe the protocols
that define the main interactions among the different entities of the
FLaaS framework.

4.1.1. Main components of the framework
In a production context, the FLaaS framework should be used by

two classes of users:

• Network operators or third parties, which define and onboard
FL services to be adopted by users, using ad hoc management
interfaces;

• UEs, which discover existing FL services, join/leave FL processes
(i.e., running instances of the above services), possibly participate
in the FL process by contributing to learning a global model, or
just use whatever is available for their own inferences.

We refer to an FL service as a collaborative learning task dedicated
to a specific application (e.g., QoE prediction for automotive appli-
cations). The FLaaS framework provides a collection of FL services
that can be instantiated when needed, i.e., when an AI model for that
specific application is requested by some UE. We refer to a running
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Fig. 2. Overview of the proposed approach for FL of TSK-FRBSs.
Fig. 3. Overview of the components involved in the FLaaS framework.
instance of an FL service as FL process. Multiple FL processes referring to
the same FL service may be instantiated simultaneously in the network,
for example handling disjoint sets of UEs in different geographical
areas.

With reference to Fig. 3, the main component of the framework
is the FL service provider (FLSP), which is located in the network and
maintains both a library of available FL services and a list of active
(running) FL processes in the system. Each UE is supported by an FLLM
that interacts with the network side of the FLaaS framework on behalf
of the UE application. It manages both the learning and inferencing
process of the UE. When the UE wants to discover an FL process, its
FLLM queries the FLSP. The latter is also responsible for coordinating
and triggering the activation of the entities that will actually execute
the FL processes. For this purpose, the FLSP will interact with the
system orchestrator, whose type will depend on the actual deployment,
e.g., the MEC Orchestrator in an ETSI MEC environment or a virtual
infrastructure manager, such as kubernetes, in a dedicated deployment.
Each active FL process is handled by its FLGM, which is in turn
composed of two modules, namely the FL process controller (FLPC) and
the FL process computation engine (FLPCE). The former manages control-
plane interactions with the FLSP (e.g., authorization grants) and the
FLLMs, whereas the latter acts as the aggregator of the FL process,
i.e., the entity that actually builds the global AI model. To do this,
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the FLPCE must exchange local and global AI model updates with the
learning module of the FLLMs, which, in their turn, act as collaborators
in the process of training the global AI model.

It is worth mentioning that the deployment of the above compo-
nents is immaterial: the FLSP may reside either in the core cloud or
at the edge of the B5G/6G network. Likewise, the FLLM may reside at
either the UE or the network edge. This last option may be necessary
with resource-constrained UEs, such as IoT devices.

The issue of function placement in a communication/computation
architecture and its implications will be discussed at the end of this
section. The description that follows is general, and can be matched to
different function placements.

4.1.2. Description of the protocols involved in the framework
In the following, we describe the functionalities that enable the

FLaaS framework. For each operation, we describe the necessary in-
teractions among the components and, where applicable, we define
alternative options that may present different trade-offs. Where it is
relevant, we also report sequence diagrams for specific interactions.

Onboarding of an FL service. The FLSP exports a management
interface to network operators or third parties to allow them to interact
with the FLaaS framework. This interface provides functions to regis-
ter/unregister an FL service. Registration messages include information
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Fig. 4. Procedures to discover and join an FL process, obtain the global model, and leave the FL process.
such as the description of the service (i.e., its objective), the application
image and configuration files, possible constraints (e.g., minimum ca-
pabilities of the UEs participating in the training) and type of training
(e.g., synchronous or asynchronous, see the part on training operation
below). This creates a library of FL services, that users can then query.
The interface also provides mechanisms to allow the operator or third
party to instantiate an FL process. When this is requested, the FLSP
requests the deployment of the entities – e.g., virtual machines or
containers – acting as FLPC and FLPCE, specifying the application
image that was previously onboarded within the FLSP.

Service Discovery. This phase is initiated by UEs to obtain the list
of available FL services and/or running FL processes. The FLLM queries
the FLSP to obtain the list of available FL services. The response may
include conditions that need to be met for the FLSP to start a new
instance of that FL service, i.e., an FL process. Alternatively, the FLLM
can obtain the list of the active FL processes in the system as depicted in
Fig. 4. The request messages may include fields for filtering the required
FL service the FLLM may be interested in (e.g., services available in
a given geographical area, or services relevant for specific use cases
only). Responses include attributes such as the current status of a
service/process, and the type of training (synchronous, asynchronous).
If there are no running FL processes for an FL service yet, the FLLM
can signal the FLSP that it is available for using an FL process. The
decision to start a new FL process is made by the FLSP, possibly when
some conditions hold (e.g., a minimum number of interested FLLMs)
and also for security reasons. Accordingly, the FLSP acknowledges the
FLLM’s intent and saves the information in a data structure for later
use. When said condition is verified later on, the FLSP actually starts
the FL process by deploying its FLGM (i.e., its FLPC and FLPCE) and
notifies all the FLLMs that have registered so far. This is exemplified in
Fig. 5, where FP_i is a generic name for an FL service for which no FL
processes are running.

Joining an FL process. Once the UE is aware of the available FL
services and processes, it may be interested in obtaining the corre-
sponding global AI model. Note that it is not strictly required that the
UE participates in the construction of the model itself. With reference
to Fig. 4, the FLLM contacts the FLSP, which checks whether the
authorization to the UE can be granted and, in the affirmative case,
returns the endpoint of the FLPC (e.g., IP address/port) to the FLLM.
Note that this allows for arbitrary service orchestration policies to be
implemented at the FLSP. For instance, the FLSP may want to partition
FLLMs requesting the same service based on some user characteristics
(possibly connected to the type of data in their possession).

Once the FLLM can connect to an FL process, it can either (i) obtain
the global AI model available for the selected FL process, if any, or (ii)
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take part in the construction of the global AI model. Below, the involved
procedures for both cases are described.

Obtaining the global AI model. The FLLM can request the global
model from the FLPC according to either a request–response or a
subscribe-notification paradigm. Both alternatives are reported in
Fig. 4. The first option allows the FLLM to obtain the model whenever
it needs it. Timestamping is used to avoid sending the same global AI
model twice to a requesting FLLM, thus wasting network resources (we
recall that global AI models can easily be in the order of megabytes).
With a subscribe-notification pattern, instead, the FLPC sends global AI
model updates when the FLPCE produces a new model. A subscription
message from the FLLM may specify filter conditions that regulate the
number of updates it expects to receive (e.g., one model update per
day).

Joining the training of the global AI model. With reference to
Fig. 6, the FLLM notifies the FLPC of its intention to participate in
the building of the global AI model. The FLPC must either accept or
reject the request. Motivations for rejection may include, for instance,
insufficient computational resources available at the UE for training
a local model, or position of the UE outside the geographical area of
interest for the given FL process. Note that an FLLM is not allowed to
join the training without first completing the join operation described
above, since the FLSP must first authorize the FLLM itself. This can
prevent some type of training poisoning done by malicious users that
bypass the authorization of the FLSP.

Training phase. This phase starts after the FLLM has joined the
training process, as shown in Fig. 6. First, the FLPC and the FLLM
exchange control-plane information. In particular, the FLPC checks
the current availability of FLLMs that joined the training by querying
them. If an FLLM replies negatively (e.g., it has not enough computing
resources at the moment), or the FLPC does not receive a reply from it
within a certain deadline (e.g., it has no connectivity at the moment),
then the FLLM is excluded from the current training phase. Then,
data-plane information flow occurs between the FLPCE and the FLLM.
This entails sending the global model from the FLPCE to the local
learning module and sending the local model in the opposite direction.
In both cases, models can be sent either as a whole, or by incremental
updates. Incremental updates can be used with well-structured models,
e.g. rules in a fuzzy set, and can lead to considerable savings of network
resources. The FLPCE can be configured to adopt both a synchronous
and an asynchronous training strategy:

• In synchronous mode (shown in Fig. 6), training takes place in
multiple rounds. For each round, the FLPCE selects the partic-
ipants, i.e., a subset of the UEs that have declared themselves
available to train the model, and notifies their learning module
when a round has started. If some UE becomes unavailable after
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Fig. 5. Procedures to start a new FLGM handling a new process FP_i.
Fig. 6. Procedures to join the training of a global AI model, and to train it.
being selected, it sends a NACK back to the FLPCE, which may
then select other UEs before starting the round. Upon reception
of an ACK from the selected participants, the FLPCE sends them
the global model (or the parameters configuration thereof). In
turn, each FLLM starts its local training and sends its updated
local model to the FLPCE. The FLPCE aggregates the received
local models and builds a new version of the global one. This
may happen, depending on the configuration, when a predefined
percentage of the participants (or possibly all) have sent their
update, or after a predefined deadline.

• In asynchronous mode, whenever a UE joins the training, its
learning module receives the global model from the FLPCE (or
the parameters configuration thereof), performs the local training
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and sends the model back to the FLPCE. The latter aggregates
such models according to a configurable policy. For instance, it
can update the new global model as soon as it receives a local
model from any UE, or when it receives the local models from a
predefined number of UEs, or when a timer expires.

Once the global AI model has been produced, the FLPCE sends it to
the FLPC, which stores it and provides it to the FLLMs requesting it.

Leaving the training of the global AI model. A UE may decide to
stop participating in the construction of the global model. For instance,
this may occur when its computational resources become too scarce,
or when it has not been selected for participating in a round for a
long time. In this case, its FLLM sends a leave request to the FLPC,
which revokes previous authorizations and responds with an ACK. On
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the other hand, the FLPC itself may decide to remove a UE from the
training process. For instance, this may occur because the UE moved
outside the geographical area of interest for the FL process, or it is too
slow to run its local training. When such an event occurs, the FLPC
sends a notification to the UE’s FLLM, which in turn replies with an
ACK.

Leaving an FL process. A UE may decide to leave an FL process,
e.g., because it is no longer interested in using a global AI model for
the given FL service. In this case, a message is sent from the UE’s
FLLM to the FLSP as shown in Fig. 4, which takes care of withdrawing
the authorization to contact the corresponding FLPC. If the operation
is done before the UE left the training (see above), the FLSP is also
responsible for informing the FLPC to remove the UE from the set of
potential participants to the training of the global AI model.

4.2. Deployment and function placement

B5G/6G networks will benefit from an integrated computation in-
frastructure, possibly based on ETSI MEC. The latter is an industrial
standard that defines entities, functions and control-plane interactions
that allow UEs to request the activation/deactivation of services, called
MEC apps, running on the MEC infrastructure [44]. FLaaS can exploit
the above infrastructure, leveraging high-performance on-demand com-
putation capabilities as well as value-added services (e.g., location of
UEs, up-to-date information on radio conditions of single UEs, etc.).
FLaaS function placement can have an impact on the type and amount
of traffic that flows through the Radio Access Network (RAN). We
describe the possible options below.

FLaaS service provisioning infrastructure (i.e., the FLSP and – for
each service – the FLPC and FLPCE) is meant to run in the MEC.

As far as the modules logically connected to the UE are concerned,
i.e., the FLLM, the inferencing module and the learning module, there
are two options:

(a) They might reside at the UE itself, if it has enough computational
resources to run them;

(b) they might reside on the MEC infrastructure, running as MEC apps
on behalf of the UE.

Options (a) and (b) are not mutually exclusive: they can be used
by different UEs in the same FLaaS process, and the same UE may
want to switch from one to the other over time, depending on the cir-
cumstances. We envisage that option (b) will be preferred by resource-
constrained UEs. In fact, it will act as an enabler, allowing such range
of UEs to exploit FLaaS benefits at an affordable cost.

As outlined, the above options impact communications as well. Un-
der option (a), the RAN transmits models only (global in the downlink,
local in the uplink). A model is a relatively large file, which needs to be
delivered fast (delaying it – in either direction – slows down the entire
learning process). This requires an ad-hoc resource scheduling strategy
at the MAC layer, which can grant large amounts of resources to a
single user for bursty transmissions. A cross-layer approach, in which
application-level UE selection (at the FLPC) is made also considering UE
radio conditions or location would be beneficial. Such an approach is
made possible in a MEC environment by the provision of MEC services.
A MEC application such as the FLPC can query the UE radio conditions
using the Radio Network Information Service (RNIS), or the Location
Service, both standardized in the ETSI MEC, and acquire in real time
the necessary knowledge to schedule updates efficiently.

Under option (b), instead, raw data, and these alone, flow in the
plink. All model exchanges occur among MEC apps, and hence do
ot affect the RAN. It can be assumed that intra-MEC communications,
ccurring on a well-provisioned wired infrastructure, do not constitute
bottleneck or require clever scheduling strategies. On the other hand,

he flow of raw data in the uplink does require some scheduling:
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aw data are sensed at the UE. They can be periodic (e.g., a sensor N
acquisition) or sporadic (e.g., the occurrence of anomalous events),
and they are unlikely to be more than a few bytes each. Well-known
MAC-level scheduling strategies, such as periodic grants, are already
available and can be used for this type of data. We observe that the
MEC infrastructure may indeed play a role in reducing the amount of
such data traversing the RAN: for instance, radio conditions can be
acquired by the UE MEC app directly from the RNIS MEC service,
without involving the UE itself and RAN-based communications.

Finally, we add a few words to dispel the notion that option b) may
defy the whole purpose of FL, i.e. to preserve privacy by preventing
UE data to fall in the hands of third parties. Under option (b), raw data
are not shared with third parties. The UE MEC app(s) running in the
MEC do not send them anywhere, and only exchange models with the
service provisioning side of the FLaaS infrastructure. MEC itself can be
expected to be a trusted infrastructure, with virtual machine/container
isolation ensured through standard OS security means [45]. Likewise,
transmission over the RAN and the core network of the mobile operator
is expected to be secure and private through authentication and cipher-
ing mechanisms natively provided by the network itself [46]. The issue
of UE mobility and MEC App migration requires some considerations
too. MEC Apps may in fact migrate to ensure geographical proximity
(hence short latency) to a mobile user. MEC App migration policies are
not under the control of the UE, and anyway App migration times are
normally larger than handover times. Accordingly, there will be time
intervals when the UEs and MEC Apps cannot communicate directly via
the RAN alone, and UE data must instead traverse the core network
to get to its destination. However, this will not represent a privacy
problem, as long as the routing to the MEC app does not leave the
operator’s network.

5. An example of FL service: the quality of experience forecasting
case study

In this paper we focus on a specific FL service, designed for ad-
dressing the QoE forecasting task in an automotive case study. Our
experimental analysis stems from the one presented in [17]: we tackle
the problem of QoE forecasting in B5G/6G networks exploiting the
same simulated, publicly available, QoE dataset7.

In this section, we recall the key concepts regarding the investigated
use case, the simulation environment, the generation of the dataset and
the main related preprocessing steps.

5.1. Description of the use case

We consider a scenario where vehicles are connected to the mobile
network, hence acting as UEs, and play real-time video streams whose
perceived quality is relevant to determine the availability of some
advanced driving assistance system. For example, in a see-through ap-
plication, a vehicle receives the live video acquired by the camera of the
vehicle in front of it, which helps the driver perform a safer overtake
maneuver. Intuitively, such a service is only safe if one can rely on
the video to be displayed continuously and with high quality for the
entire duration of the maneuver, which may require several seconds.
Thus, in order to decide whether to start such maneuver at all, we need
to predict the QoE perceived by UEs in the next future by leveraging
real-time QoS and QoE data generated by the UEs themselves. Similar
applications are investigated in [47–52].

Considering the see-through application, we assume that the video
streaming does not occur directly between UEs (i.e., using device-to-
device communications). Instead, we consider a scenario in which the
sending UE sends its live video stream to an application running at the
edge of the network (e.g., a MEC application in a MEC host). In turn, the

7 http://docenti.ing.unipi.it/g.nardini/ai6g_qoe_dataset.html, accessed
ovember 2022.

http://docenti.ing.unipi.it/g.nardini/ai6g_qoe_dataset.html
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Fig. 7. Simulation scenario.

edge application forwards the video stream to the destination UE. This
is done because the edge application may (or may not) perform some
processing on the incoming video stream. For example, it may augment
the video with some context information – e.g., indicating the position
of traffic lights – or it may try to recover possible losses occurred in the
uplink transmission.

In this scenario, each UE receiving a video stream instantiates its
FLLM (either locally or at the MEC), since it is interested in knowing
the future QoE of the video. The FLSP is deployed at the MEC and, upon
the reception of the first discovery request from an FLLM, it instantiates
the FLGM that handles the requested FL process. We assume that a UE
receiving the video stream collects both QoS (e.g., inter-arrival time
and loss rate of application packets) and QoE (e.g., percentage of frames
that are correctly displayed) metrics while receiving the video stream,
and makes such data available to its FLLM. Context information such as
the UE’s position and speed can also be part of the dataset to train an
ML model. Each UE collects the above metrics at discrete time periods,
hence the UE produces a vector for each metric, whose 𝑖th element is
the value of the metric collected at time 𝑖. If the FLLM performing the
local model training is deployed at the MEC, network-wise metrics such
as the average utilization of the cell can also be leveraged to provide
more meaningful predictions. This is the scenario we consider for the
QoE forecasting use case in this section. All the above metrics will be
exploited to predict the value of a target QoE metric (or a set thereof)
at a time in the future.

To support the above prediction, we need to train an ML model with
a dataset that includes realistic QoS and QoE metrics obtained from the
mobile network. However, mobile network data are notoriously hard
to get from operators, for confidentiality reasons, and their level of
detail is often coarse (e.g., delays and losses of individual flows tend
not to be logged at sub-second timescales, if at all). For this reason we
relied on network simulations to generate the relevant dataset. Since
the definition of the 6G RAN architecture is still underway at the time of
writing, using a 5G RAN simulator – namely Simu5G – is the only viable
choice. The next section will present the features of such simulation
software.

5.2. Simu5G

Simu5G [43] is an open-source model library for the OMNeT++
discrete-event simulation framework [53], and provides the modules
for the simulation of the data plane of 4G and 5G mobile networks.
In particular, Simu5G provides the modules that represent the UEs
and the base stations (gNBs) of a 4G/5G network. They are modeled
by a device equipped with a NewRadio (NR) Network Interface Card
(NIC) submodule, alongside the submodules for the other layers of
the NR protocol stack. The NR NIC, in turn, implements the data-
plane functionalities of all the sublayers of the NR protocol stack,
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from Packet Data Convergence Protocol (PDCP) to the physical layer.
Since the scope of Simu5G is not to evaluate the performance of link-
level transmissions, the physical layer is implemented via realistic
channel models (i.e., taken from 3GPP standard documents) that ab-
stract the transmissions of radio symbols over the wireless medium and
only simulate the effects on their correct reception. This also allows
Simu5G to reduce the simulation complexity and simulate large-scale
network scenarios (e.g., composed of tens of gNBs and hundreds of
UEs). Specific NR features are also supported by Simu5G, such as dual
connectivity, carrier aggregation, multiple numerologies, frequency-
and (flexible) time-division duplexing. Moreover, Simu5G provides a
realistic modeling of MEC compliant with the ETSI specifications [54].
The latter is implemented using standard-compliant RESTful interfaces
to the applications running on the UE and to the MEC apps running
on MEC hosts, so that real applications can be interfaced with it, also
in real time (e.g., to emulate a network scenario for demonstration
purposes [55]).

Being part of the OMNeT++ ecosystem allows Simu5G to exploit
and integrate many other libraries made available by the community
and the OMNeT++ developers themselves, like INET that provides
the modules for Internet protocols (e.g., the whole TCP/IP stack) and
devices (e.g., IP-based routers) [56]. This allows Simu5G users to
simulate arbitrarily complex network scenarios to evaluate end-to-end
performance of applications and services exploiting the 5G radio access
network, as well as the performance of the 5G network itself.

In the following, we describe how we exploited Simu5G to evaluate
our proposed FLaaS framework and to generate a realistic dataset
related to video-streaming application in B5G/6G networks, which will
be used to assess the performance of the algorithms for FL of XAI
models.

5.3. Generation of the dataset

In order to generate a realistic dataset for the use case presented
in Section 5.1, we implemented a client–server video-streaming appli-
cation within Simu5G. The server sends a video stream to the client
following a trace-based approach: sending rate, size and type of video
frames are read from a trace file generated from real videos via a
dedicated command of the FFmpeg library.8 Traces were obtained from
three dash-camera videos, so as to reproduce a see-through scenario.9
The video is transmitted via the Real-time Transport Protocol (RTP),
hence frames are fragmented at the application layer before being
sent. RTP packets received by the client are then played out at their
corresponding playout time. We configured the client with 100ms-
playout delay: this is a tradeoff between the responsiveness of the video
streaming and the buffering time required to prevent stalls.

Fig. 7 illustrates the network topology in our simulation scenario,
which is composed by a regular hexagonal grid of seven gNBs, with
inter-gNB distance of 500 m. 15 UEs are deployed randomly over the
floorplan, and they dynamically connect to the gNB they receive the
highest power from. Each UE runs the client side of the video-streaming
application, whereas their server-side counterparts reside on an edge
host connected to the 5G core network. Each client receives a different
video trace, obtained by starting one of the three aforementioned
dash-cam videos at different times. In order to simulate realistic load
conditions, each gNB is configured to send 50 KB/s downlink traffic to
30 background UEs. We also simulate an additional tier of background
cells, each serving 30 background UEs, with the aim of adding interfer-
ence to the UEs attached to the seven central gNBs [55]. Each gNB is
configured with 20 MHz bandwidth, resulting in 100 Resource Blocks
(RBs). We run 24 independent replicas of a 120-second simulation,
collecting time-tagged metrics from the 15 UEs in the seven central
cells. The description of the produced metrics is reported in Table 2.

8 ffprobe -show_frames: online documentation https://ffmpeg.org/
ffprobe.html, accessed November 2022.

9 https://bit.ly/3iN651q, https://bit.ly/35n9elO, https://bit.ly/3IT5g24,
accessed November 2022.

https://ffmpeg.org/ffprobe.html
https://ffmpeg.org/ffprobe.html
https://bit.ly/3iN651q
https://bit.ly/35n9elO
https://bit.ly/3IT5g24
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Table 2
Description of the metrics included in the dataset.
Name Level Description Missing values

handling strategy

Context

UE position Application (x, y, z) coordinates of the UE in the floorplan Forward filling
UE speed Application Speed of the UE in 𝑚

𝑠
Forward filling

QoS metrics

avgServedBlocksDl Network Number of RBs occupied in downlink Default value: -1
averageCqiDl Network CQI values reported in DL Default value: 0
rcvdSinrDl Network SINR value measured at packet reception Default value: -20
servingCell Network ID of the new serving cell after the handover Forward filling
frameSize Application Size of the displayed frame (Byte) Default value: 0
rtpPacketSize Application Size of the RTP packet (Byte) Default value: 0
end2EndDelay Application Time between transmission and reception of an RTP packet Default value: -1
interArrivalTimeRtp Application Interarrival time between two RTP packets Default value: 0
rtpLoss Application RTP packets of frame lost Default value: 0

QoE metrics

framesDisplayed Application Frame percentage arrived at the time of its display Default value: 0
playoutBufferLength Application Frame buffer size Default value: 0
firstFrameElapsedTime Application 3 values: (1) timestamp of the UE request, (2) timestamp of the sender

ACK, (3) time between the request and the first frame displayed
NA
The resulting dataset consists of 5568 rows, each being a tuple with
ix fields:

run is the ID of the replica; network_parameters include the vari-
bles describing the simulation configuration (e.g., the scheduling al-
orithm); module is the network entity (e.g., ue[0]) that recorded the
etric; statistic is the name of the recorded metric; values is a vector

ncluding the values recorded for the above metric; timestamp is a vector
hose elements are the timestamps of the corresponding elements of

he values vector.

.4. Qoe prediction as a regression problem: preprocessing and design
hoices

We formulate the QoE forecasting problem as a regression problem
s in [17]. In the following, we first recall the preprocessing steps
esigned to transform the original raw dataset into a regression dataset,
uitable for the downstream adoption of traditional ML approaches.
hen, we describe the design choices, detailing about the parameter
onfiguration adopted for the generation of the TSK-FRBSs.

The preprocessing steps can be summarized as follows:

1. identification of the timeseries available at each UEs;
2. windowing on the timeseries (Fig. 8);
3. handling missing values;
4. statistics computation on each window;
5. feature selection.

In the first step, the timeseries available at each UE have been
etermined. The avgServedBlocksDl statistic (related to gNBs) can be re-
rieved by the UEs, based on the known value of the current ServingCell,
hrough the services available in a MEC-enabled architecture. Similarly,
ince the position of each UE and gNB is known, the distance between
n UE and its serving gNB can be computed (UE_Distance_to_gNB).

Fig. 8 shows the windowing operation (step 2). As an example, the
irst ten seconds of the timeseries from three metrics are shown, namely
E_Distance_to_gNB, rcvdSinrDL and framesDisplayed (QoE target metric).

At this point, differently from [17], missing values are handled
y replacement with default values or by using the forward filling
pproach (step 3). The strategy used for each metric is dictated by
he reason behind the absence of the measurement and is reported in
able 2.

Any record of the preprocessed dataset is obtained as follows:
e compute statistics within a window 𝑊 over historical data of
ach variable (step 4). Such statistics consist in mean, median, max,
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in, variance, standard deviation, kurtosis, skewness, Q1 and Q3: the
number of actual samples are used for the estimates. The associated
target value is the mean of the frameDisplayed variable over the time
horizon of size 𝐻 (one step ahead forecasting). The subsequent record
is obtained by sliding the two windows with a step 𝐻 . Each instance
is thus represented in R132 (11 statistics evaluated over window of size
W on 12 timeseries) and is associated with the target QoE (average
value of frameDisplayed over window of size H). In this analysis we
focus on timeseries metrics, therefore we do not include the values of
firstFrameElapsedTime.

Finally, a feature selection based on decision tree [57] is performed
to reduce the dimensionality of the problem. A preliminary experimen-
tal analysis, carried out by inducing a regression on the whole training
set, allowed us to select the following 15 most relevant features: frames-
Displayed_Q3_W, framesDisplayed_mean_W, playoutBufferLength_mean_W, interAr-
rivalTimeRtp_max_W, framesDisplayed_median_W, playoutBufferLength_counter_W,
distanceGNB_variance_W, distance- GNB_stdev_W, interArrivalTimeRtp_counter_W,
interArrivalTimeRtp_skew_W, framesDisplayed_kurtosis_W, end2endDelay_mean_W,
rcvdSinrDl_Q3_W, end2endDelay_counter_W, distanceGNB_skew_W. For this step,
we resorted to the decision tree for regression available in scikit-learn10.

For the purpose of TSK-FRBSs generation, the following design
choices are performed. Each feature is clipped in the range [0, 1] after
robust scaling using quantiles (0.025, 0.975); this is to ensure that all
participants have the features defined in the same range, and that
scaling does not depend on the 5% most extreme values of each distri-
bution. Then, the number of fuzzy sets in which each input attribute is
partitioned is set equal to three: this guarantees a high level of semantic
interpretability [58] thanks to the adoption of just three linguistic
labels (Low, Medium and High). Finally, we set the windows size 𝑊 = 3
and 𝐻 = 1.

6. Experimental analysis of Fed-XAI models for QoE forecasting

In this section, we first describe our experimental setup, in terms of
learning settings and evaluation metrics, and then report and discuss
the results of our experiments on FL of XAI models for QoE forecasting
from a twofold perspective: model performances and interpretability
aspects.

10 https://scikit-learn.org/stable/, accessed November 2022.

https://scikit-learn.org/stable/
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Fig. 8. Preprocessing steps: the QoE prediction task as a regression problem.
Source: Figure from [17].
Fig. 9. Schematized representation of the three experimental learning settings: (a) federated learning, (b) local learning; (c) centralized learning.
6.1. Experimental setup

The QoS-QoE dataset is naturally spread over the fifteen UEs. To
assess the generalization capability of our proposed ML models, we split
the local dataset of each UE into training and test sets according to the
same rationale described in [17]: the union of the first 20 runs out of
the 24 independent runs are used as training set, whereas the remaining
4 runs are used as test set. Hereafter, we refer to the four test sets as
Run 1, Run 2, Run 3, and Run 4. In addition to being consistent with
the established experimental setup, this splitting ensures a quite high
number of instances both in the training set (35487) and in the test set
(7213).

We consider the following learning settings:

Federated Learning (FL) setting: The approach described in
Section 3.2 for FL of TSK-FRBS is adopted. This setting entails
a form of collaboration among UEs without any disclosure of
private raw data.

Local Learning (LL) setting: Each client locally learns its own TSK-
FRBS. This setting is privacy preserving, but entails no collabo-
ration among UEs.

Centralized Learning (CL) setting: The union of the local training
sets is used to train a global TSK-FRBS. Evidently, this setting
represents the utmost form of collaborative training, but implies
the violation of the users’ privacy due to the collection of local
raw data at a central location.

A schematized representation of the three settings is reported in
Fig. 9. The goal of the experimental analysis is threefold: first, we
367
evaluate the modeling capability of the TSK-FRBS learned in a federated
fashion. Second, we compare the performance obtained in the FL
setting with those in the LL setting to assess whether the FL paradigm
brings any benefit to the participants. Third, we compare the perfor-
mance obtained in the FL setting with those in the CL setting to quantify
the performance degradation with respect to the (generally unfeasible)
scenario in which all data can be gathered for training on a central
server.

The quality of prediction of the TSK-FRBSs is evaluated through
the Mean Squared Error (MSE) and the coefficient of determination (𝑅2),
formally defined in the following Eqs. (4) and (5), respectively:

𝑀𝑆𝐸 = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (4)

𝑅2 = 1 −
∑𝑁𝑡𝑒𝑠𝑡

𝑖=1 (𝑦𝑖 − 𝑦𝑖)2
∑𝑁𝑡𝑒𝑠𝑡

𝑖=1 (𝑦𝑖 − �̄�)2
(5)

where 𝑁𝑡𝑒𝑠𝑡 is the number of samples considered for the evaluation, 𝑦𝑖
and �̂�𝑖 are the ground truth value and the predicted value associated
with the 𝑖th instance of the test set, respectively, and �̄� is the mean of
ground truth values. When all the predictions match the true values,
we obtain 𝑀𝑆𝐸 = 0 and 𝑅2 = 1. Thus, the goal is to minimize MSE
and maximize 𝑅2.

For the purpose of performance assessment, we evaluate the metrics
as follows: regardless of the learning setting, we consider the actual
partition of the dataset across UEs; specifically, for CL and FL the global
model is evaluated on each run of the local test sets; for LL, each local
model is tested on the dedicated, private, test set.
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Fig. 10. Empirical cumulative distribution function (ECDF) of the differences of MSE scores (a) and 𝑅2 scores (b) between FL and LL (𝛥𝐹𝐿−𝐿𝐿, dark blue circles) and between FL
and CL (𝛥𝐹𝐿−𝐿𝐿, light blue diamonds).
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Table 3
Average values of MSE scores and 𝑅2 scores on the training set and on the test set
(highlighted in italic), obtained with the three learning settings.

FL LL CL

Train Test Train Test Train Test

MSE 0.052 0.066 0.030 0.094 0.045 0.057
𝑅2 0.614 0.559 0.799 0.376 0.692 0.617

6.2. Experimental results

Table 3 shows the average values of MSE and 𝑅2 obtained with the
three learning settings on the training set (20 runs) and on the test set
(4 runs).

Results on the test set suggest that FL model outperforms, on
average, the LL models. The indications given by the two metrics are
in agreement: FL obtain lower values of MSE compared to LL (0.066
vs 0.094) and higher values of 𝑅2 (0.559 vs 0.376). Interestingly, local

odels are particularly prone to overfitting: in fact, the results obtained
n the training set from the LL models are the best ones, but the wide
ap with respect to the results on test set is an indication of poor
eneralization capability.

In the rightmost column of Table 3 we also report the results
btained in the CL setting: evidently, the ability to train the model on
he complete set of training data leads to the best average results on
he test set, both in terms of MSE and 𝑅2.

The average values, however, provide only a rough indication of
he performances, but do not accurately reflect the actual situation
xperienced on each UE. To provide a fine grained picture of the
erformance of FL and LL models, we report the values of MSE and 𝑅2

n Table 4 and 5, respectively, as computed on each run of the test set
f each UE. For the sake of visualization, we omit to report the results
or the CL setting, merely pointing out that it leads, in general, to better
erformance.

Also for the purposes of this analysis, we find that the two metrics
ive consistent indications. Although for some UEs and some runs,
he locally learned model leads to better modeling of the regression
roblem, in most cases the FL model outperforms the LL one. In other
ords, UEs generally achieve a benefit in participating in the federation

n terms of enhanced modeling capability, without any disclosure of
rivate raw data.

The fine-grained information reported in Tables 4 and 5 is elabo-
ated in a compact visualization shown in Fig. 10.

Fig. 10(a) shows the empirical cumulative distribution function
ECDF) of the difference between the MSE score of FL setting and the
SE score of LL setting (𝛥𝐹𝐿−𝐿𝐿, dark blue circles) and between the
SE score of FL setting and the MSE score of CL setting (𝛥 ,
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𝐹𝐿−𝐶𝐿
ight blue diamonds) for each of the 60 experiments (i.e., 4 runs for
ach of the 15 UEs). The plot can be interpreted as follows: a curve
ies in the negative half-plane if and only if the MSE values of the FL
odel are lower (and therefore better) than those of the model with
hich it is compared. It can thus be noticed that the discrepancy of
SE values between the different settings is generally in the range of

−0.05,+0.05]. Furthermore, the dark blue curve crosses the 𝑦-axis in
round 0.8, indicating that in about 80% of cases the FL model obtains
etter performance than its local counterpart on the corresponding test
un. The light blue curve, conversely, lies in the positive half-plane
tarting from around the value of 0.15, testifying the better modeling
apability of the CL model compared to the FL one in about 85% of
ases. Fig. 10(b) shows the ECDF analysis related to the values of 𝑅2:
he considerations are similar to those reported for the MSE, taking
nto account that 𝑅2 has to be maximized and therefore the problem is
ymmetrical with respect to the 𝑦-axis.

We performed the pairwise Wilcoxon signed-rank test [59] to assess
ossible statistical differences in performances (in terms of MSE and 𝑅2)

between the FL setting and the other ones: specifically, the FL setting
is selected as the control one and is separately compared with LL and
CL. For each setting, the distribution consists of 60 values of the metric
measured on the test sets (4 runs for 15 UEs). Table 6 reports the results
of the test.

𝐑+ and 𝐑− denote, respectively, the sum of ranks for the eval-
uations in which the federated model outperformed the other one,
and the sum of ranks for the opposite outcome. The statistical hy-
pothesis of equivalence can be rejected whenever the 𝑝-value is lower
than the level of significance 𝛼. Results suggest that, with 𝛼 = 0.05,
the FL model statistically outperforms the LL ones, regardless of the
metric considered. On the other hand it is outperformed by the CL
model.

It is worth analyzing the experimental results also from the per-
spective of the actual timeseries. Fig. 11 shows a QoE timeseries for
an example test run of an example UE (Run-1, UE-04): specifically, the
true values of QoE (𝑦_𝑡𝑟𝑢𝑒) are shown, along with the values predicted
with the three learning settings (FL, LL, CL).

It can be noticed (Fig. 11(a)) that the gray curve (CL predictions)
traces the black curve (𝑦_𝑡𝑟𝑢𝑒) more closely, whereas the red one (LL
predictions) often exhibits incorrect predictions. In the magnified por-
tion of the timeseries depicted in Fig. 11(b) we can appreciate further
details: around second 41, a minimal increase in QoE is improperly
predicted by the LL model, whereas FL and CL models predict low QoE.
Moreover, at around second 47, it can be observed that all the learning
settings correctly model the actual increase but with different delays:
response time is shorter for CL and FL and longer for LL, confirm-
ing the general considerations about the performance of the different
settings.
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Table 4
MSE scores: fine-grained results on the test set for FL and LL models. Best values are highlighted in bold.

Run 1 Run 2 Run 3 Run 4

FL LL FL LL FL LL FL LL

UE-01 0.049 0.047 0.087 0.098 0.061 0.073 0.070 0.085
UE-02 0.037 0.042 0.075 0.093 0.156 0.160 0.059 0.067
UE-03 0.066 0.051 0.054 0.056 0.027 0.054 0.100 0.104
UE-04 0.062 0.083 0.097 0.118 0.088 0.105 0.072 0.068
UE-05 0.039 0.039 0.027 0.020 0.051 0.056 0.073 0.076
UE-06 0.078 0.112 0.063 0.102 0.068 0.063 0.100 0.091
UE-07 0.043 0.053 0.046 0.630 0.060 0.075 0.042 0.061
UE-08 0.066 0.076 0.086 0.072 0.138 0.093 0.060 0.037
UE-09 0.029 0.029 0.044 0.043 0.080 0.101 0.057 0.068
UE-10 0.112 0.124 0.073 0.089 0.055 0.080 0.064 0.096
UE-11 0.073 0.090 0.058 0.061 0.065 0.067 0.131 0.548
UE-12 0.053 0.075 0.032 0.055 0.038 0.046 0.030 0.031
UE-13 0.038 0.060 0.104 0.244 0.036 0.029 0.068 0.080
UE-14 0.050 0.062 0.037 0.047 0.110 0.134 0.073 0.084
UE-15 0.056 0.100 0.048 0.076 0.076 0.079 0.061 0.069
Table 5
𝑅2 scores: fine grained results on the test set for FL and LL models. Best values are highlighted in bold.

Run 1 Run 2 Run 3 Run 4

FL LL FL LL FL LL FL LL

UE-01 0.595 0.604 0.318 0.226 0.684 0.623 0.612 0.525
UE-02 0.808 0.778 0.392 0.239 0.011 −0.011 0.372 0.287
UE-03 0.633 0.717 0.715 0.706 0.627 0.252 0.435 0.417
UE-04 0.631 0.502 0.420 0.295 0.362 0.235 0.534 0.563
UE-05 0.770 0.768 0.550 0.659 0.727 0.696 0.557 0.542
UE-06 0.450 0.209 0.614 0.376 0.640 0.667 0.509 0.552
UE-07 0.583 0.490 0.675 −3.422 0.642 0.558 0.577 0.390
UE-08 0.594 0.533 0.525 0.600 0.318 0.540 0.691 0.809
UE-09 0.869 0.870 0.395 0.412 0.536 0.420 0.743 0.690
UE-10 0.229 0.144 0.546 0.446 0.622 0.449 0.526 0.288
UE-11 0.546 0.441 0.652 0.630 0.653 0.645 0.305 −1.901
UE-12 0.675 0.540 0.802 0.662 0.735 0.679 −0.134 −0.166
UE-13 0.772 0.636 0.355 −0.514 0.816 0.850 0.417 0.318
UE-14 0.622 0.526 0.825 0.777 0.381 0.248 0.435 0.349
UE-15 0.690 0.448 0.724 0.560 0.580 0.563 0.662 0.623
Table 6
Results of the Wilcoxon Signed-Rank test on the performance metrics measured on the
test sets (MSE and 𝑅2). The learning setting that statistically outperforms the other
(with significance level 𝛼 = 0.05) is highlighted in italic in the comparison.

MSE

Comparison 𝐑+ 𝐑− 𝑝-value Hypothesis (𝛼 = 0.05)

FL vs LL 1563 267 0.0000 Rejected
FL vs CL 135.5 1694.5 0.0000 Rejected

𝑅2

Comparison 𝐑+ 𝐑− 𝑝-value Hypothesis (𝛼 = 0.05)

FL vs LL 1575 255 0.0000 Rejected
FL vs CL 144 1686 0.0000 Rejected

Table 7
Model complexity. Number of rules of the
TSK-FRBSs (size of the rule base).

FL LL CL

997 289.1 ± 21.6 997

6.3. Interpretability analysis

The model complexity can be regarded as a proxy for assessing the
global interpretability of an FRBS: less complex models (with fewer
rules) are generally deemed more interpretable.

Table 7 reports the number of rules of the FL, LL and CL models.
For the LL setting we report the mean and standard deviation of the
number of rules of the local models generated by the fifteen UEs.
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Expectedly, the number of rules of the FL approach coincides with
that of CL approach: both approaches in fact use, directly or indirectly,
all the training instances spread on the various UEs for model gener-
ation. FL (and CL) model, on the other hand, is more complex than
the LL models by a factor of around 3.4, which can still be considered
limited given the fact that the data originate from 15 UEs.

Interpretability is not only related to the structural properties of
the model, but also to the inference strategy. In our TSK-FRBSs the
predicted output depends on a single rule and an interpretation can be
easily provided: the antecedent part of a rule isolates a region of the
search space, whereas its consequent part describes a local linear model
therein. Fig. 12 reports a graphic representation of two rules extracted
from the FL TSK-FRBS, with an indication of the importance of each
feature 𝑓 in the linear model.

The color of each bar denotes the relevant fuzzy set, as specified
in the antecedent, whereas its width indicates the actual value of the
coefficient 𝛾𝑓 in the linear model. As an example, Fig. 12(a) suggests
that when the values of all features is 𝐿𝑜𝑤 (except for
end2endDelay_counter_W ), the predicted output strongly decreases with
the value of framesDisplayed_mean_W. Conversely, when the conditions
of Fig. 12(b) hold, the output strongly increases with the value of
rcvdSinrDl_Q3_W.

Finally, the inference process associated with two example test
instances is explicated in Tables 8 and 9. The value 𝑦𝑝𝑟𝑒𝑑 is computed
as follows:

𝑦𝑝𝑟𝑒𝑑 = 𝛾0 +
𝐹
∑

𝑓=1
𝛾𝑓 ⋅ 𝑥𝑓 (6)



Computer Communications 210 (2023) 356–375J.L. Corcuera Bárcena et al.

m

Fig. 11. Comparison of real and predicted values of QoE for an example test run (Run 1) from an example UE (UE-04). The predicted output is shown with different colors and

arkers for the three learning settings (FL, LL, CL).
Table 8
Inference process on Rule 1. 𝛾0 = −0.084.
Feature 𝑓 𝐴𝑓 𝜇𝐴𝑓

(𝑥𝑓 ) 𝑥𝑓 𝛾𝑓 𝑥𝑓 ⋅ 𝛾𝑓 𝑦𝑝𝑟𝑒𝑑 𝑦𝑡𝑟𝑢𝑒

framesDisplayed_Q3_W low 1.000 0.000 0.632 0.000

0.009 0.019

framesDisplayed_mean_W low 0.986 0.007 −3.287 −0.023
playoutBufferLength_mean_W low 0.584 0.208 1.165 0.242
interArrivalTimeRtp_max_W low 0.866 0.067 1.280 0.086
framesDisplayed_median_W low 1.000 0.000 0.000 0.000
playoutBufferLength_counter_W low 0.960 0.020 −0.708 −0.014
distanceGNB_variance_W low 0.904 0.048 2.033 0.097
distanceGNB_stdev_W low 0.571 0.215 −1.200 −0.257
interArrivalTimeRtp_counter_W low 0.991 0.005 1.570 0.007
interArrivalTimeRtp_skew_W low 0.827 0.086 −0.436 −0.038
framesDisplayed_kurtosis_W low 0.612 0.194 −0.369 −0.071
end2endDelay_mean_W high 1.000 1.000 0.053 0.053
rcvdSinrDl_Q3_W low 0.751 0.124 −0.155 −0.019
end2endDelay_counter_W low 0.991 0.005 1.570 0.007
distanceGNB_skew_W low 0.738 0.131 0.177 0.023
Table 9
Inference process on Rule 2. 𝛾0 = −0.210.
Feature 𝑓 𝐴𝑓 𝜇𝐴𝑓

(𝑥𝑓 ) 𝑥𝑓 𝛾𝑓 𝑥𝑓 ⋅ 𝛾𝑓 𝑦𝑝𝑟𝑒𝑑 𝑦𝑡𝑟𝑢𝑒

framesDisplayed_Q3_W high 1.000 1.000 0.246 0.246

1.068 1.000

framesDisplayed_mean_W medium 0.956 0.478 0.465 0.222
playoutBufferLength_mean_W medium 0.785 0.608 0.636 0.387
interArrivalTimeRtp_max_W high 1.000 1.000 −0.291 −0.291
framesDisplayed_median_W low 1.000 0.000 0.003 0.000
playoutBufferLength_counter_W medium 0.993 0.497 0.590 0.293
distanceGNB_variance_W low 0.979 0.010 0.056 0.001
distanceGNB_stdev_W low 0.805 0.098 0.190 0.019
interArrivalTimeRtp_counter_W high 1.000 1.000 0.223 0.223
interArrivalTimeRtp_skew_W high 1.000 1.000 −0.210 −0.210
framesDisplayed_kurtosis_W low 0.986 0.007 −0.031 0.000
end2endDelay_mean_W high 1.000 1.000 −0.257 −0.257
rcvdSinrDl_Q3_W medium 0.718 0.359 1.265 0.454
end2endDelay_counter_W high 1.000 1.000 0.223 0.223
distanceGNB_skew_W medium 0.908 0.546 −0.058 −0.031
370
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Fig. 12. Feature importance: vector of coefficients of the linear model for two rules (a) Rule 1 (b) Rule 2. Color code indicates the antecedent part of the rule: for each input
feature, the bar is green for fuzzy set Low, orange for fuzzy set Medium and red for fuzzy set High.
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7. Evaluation of the network impact on the flaas framework

In this section we evaluate the learning process times in the FLaaS
framework, under different network load conditions and different de-
ployments of FLaaS functions. This evaluation, carried out via de-
tailed end-to-end, system-level simulations, takes into account both the
communication and the computation aspects.

We implemented the FLaaS framework described in Section 4 within
Simu5G. FL entities have been developed as ETSI MEC applications
running on a MEC host with the exception of the FLLM, that can instead
be deployed on the UE according to its needs. This choice allows us
to evaluate the framework when model exchanges occur via the 5G
mobile network, under different network conditions. More in detail, we
simulated a scenario composed of seven gNBs, deployed in a regular
hexagonal grid as shown in Fig. 7, 500 meters apart from each other.
A second tier of background cells, serving different background UEs,
has been added in order to generate interference to the UEs connected
to the seven central gNBs, which are the ones involved in the training.
A MEC system, composed by only one MEC host, is connected to the
371

network. First, each UE deploys its FLLM as either a local application U
or a MEC application. Then it instructs the FLLM about which FL
service to take part in, i.e., QoE_forecasting. The FLGM handling the
latter runs on the MEC host, and as soon as the required number of
FLLMs is reached – i.e., the required number of FLLMs notified their
interests in participating to the training process – the FLPCE starts
the training phase. The configuration information of the FL process
(possibly including the latest version of the global model) is sent to all
the available FLLMs, which start the training with their local data after
receiving it. After the training is completed, the new generated local
models are sent back to the FLPCE. The latter aggregates the received
local models only when all of them have been received. When the
LLM is deployed on the MEC host, the UE periodically sends the data
epresenting the training dataset to it. In our simulations we assumed
hat the FLLM already has the data when it receives the global model
o train.

The above use case has been evaluated in four different scenarios,
onsisting of the cross product of two deployments of the FLLM (on the
E, on the MEC), and two network loads (light, heavy).

The load of the network is quantified by the number of background
Es served by each cell, i.e., 10 for light load and 30 for heavy load.
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Table 10
Main scenario parameters.
Network parameters Value

Carrier frequency 2 GHz
Bandwidth 10 MHz
Numerology index 0
Downlink/Uplink duplexing Frequency Division Duplexing
Path loss model Urban Macro (UMa)[60]
Number of gNBs 7
Number of background gNBs 12
Number of UEs [20, 40, 60, 80]
Number of background UEs per cell [10, 30]
Background traffic Downlink 50 KB/s CBR
Background traffic Uplink 20 KB/s CBR
UE speed uniform(13.8 mps, 41.7 mps)

FLaaS parameters Value

FLLM deployment [UE, MEC host]
Size of the global configuration 240 kB
Size of the local model Uniform(70 kB, 80 kB)
Training duration of the local model on UE Exponential(50 s) with 0.9 probability

Exponential(85 s) with 0.1 probability
Training duration of the local model on the MEC host Normal(15 s, 2 s)
Model aggregation time 500 ms * #local models received
Dataset chunk size and period 140B, 1 s
Fig. 13. Time to receive local models, with FLLMs on the UEs, light (left) and heavy (right) network load.
Each scenario has been run with an increasing number of UEs involved
in the training. UEs can be heterogeneous devices, such as smartphones
or laptops, hence the time to train the model may vary considerably.
For this reason we generated the training times according to different
distributions, depending on whether the FLLMs run on the UEs or on
the MEC. For the latter we assumed shorter training times, since a MEC
host has more computational resources. The dimension of the model,
the duration of the training and other network parameters are reported
in Table 10.

Our aim is to assess the time it takes for the FLPCE to retrieve all
the local models from the FLLMs. Times are computed starting from
when the FLPCE selects the FLLM for the training to when it receives
the trained local model: hence they include uplink and downlink com-
munications and training times, as well as the time needed to traverse
all the protocol stack from/to the application layer (e.g., including the
setup times for TCP connections).

Fig. 13 shows the time needed to retrieve a given number of local
models, in the two load conditions described above. Since the training
times are extracted from the same distributions in both load conditions,
the difference between the two graphs is given by the communication
overhead (in both the downlink and the uplink), i.e. the time it takes to
send the models over the air. The charts allow us to observe how many
local models the FLPCE should expect to receive at any given time.
For instance, this information can be used to set meaningful deadlines
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on the training process, i.e., a maximum waiting time between the
start of the training process and the start of the aggregation phase. For
example, if the FLPCE performs the aggregation after 100 s and the
number of FLLMs is 80, the FLPCE will have 65–70 models to aggregate
when the network is lightly loaded, whereas it will aggregate around
60 models when the network is heavily loaded. Such information can
be useful for tuning the parameters of the FL process.

The Empirical Cumulative Distribution Functions (ECDFs) of the
time needed to exchange the models over the air in Figs. 14 and
15 confirm the above considerations and show how the load of the
network affects such times. In particular, Fig. 14 shows that when
the network is lightly loaded the time to send the global model in
the downlink also depends on the number of the FLLMs, while with
a heavily-loaded network the times do not depend anymore on the
number of the FLLMs. This is because the data traffic generated by
background UEs is prevalent with respect to the one needed to send
global models to the FLLMs. Fig. 15 shows that the number of FLLMs
does not significantly affect the time needed to send their trained local
models, but even in this case the load of the network is relevant. In
particular, the probability that a model is sent in less than five seconds
is 0.95 when only 10 background UEs per cell are present, while in the
other case the probability is below 0.8.

Fig. 16 shows the time needed to receive the local models as a
function of the number of FLLMs, when these are deployed on the
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Fig. 14. ECDF of the time to send the global model from the FLPCE to the FLLM, light (left) and heavy (right) network load.
Fig. 15. ECDF of time to send the local model from the FLLM to the FLPCE, light (left) and heavy (right) network load.
Fig. 16. Time to receive local models, with FLLMs on the MEC host, light (left) and heavy (right) network load.
MEC host. Comparing the charts with the ones in Fig. 13, we observe
that the time needed to receive a given number of local models is
greatly reduced, hence the benefit of deploying the FLLMs on the MEC
is evident. Moreover, such time is independent of the mobile network
load, since models are not exchanged over the air anymore in this case.
The data used for the training is transmitted as a data stream over the
air (in the uplink), but it consists of comparatively fewer data, which
occupy few RBs and do not suffer from large delays — unlike models,
which are bulky.
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8. Conclusion

In this work, we have proposed a novel framework for Federated
Learning (FL) of eXplainable AI (XAI) models. Our framework is envi-
sioned to empower B5G/6G networks with AI services and stems from
the urge for trustworthiness in intelligent systems. The FL paradigm, in
fact, ensures raw data privacy preservation while enabling collabora-
tive learning of AI models. Furthermore, in our case, such models are
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explainable by-design so that any entitled stakeholder can monitor and
oversee a transparent decision-making process.

Our proposal targets the synergic interface between trustworthy AI
and next generation wireless networks and encompasses the following
contributions. First, a novel FL-as-a-Service (FLaaS) framework is pro-
posed and a thorough description of its components is provided along
with their interaction and deployment. Second, an example FL service
pertaining the automotive field is investigated: multiple instances of
connected User Equipments consume a video stream and the goal of the
AI model is to forecast the related Quality of Experience (QoE). Third,
a comprehensive experimental analysis is carried out. Our approach for
FL of XAI models is employed to address the problem of QoE forecasting
and compared with (i) a local learning approach, which rules out
collaboration among UEs, and (ii) a centralized learning approach,
which entails centralization of raw data and privacy violation. Results
are evaluated in terms of widely acknowledged regression metrics and
show that our approach outperforms the local one, thus testifying for
the benefit of the federation; in turn, it is outperformed by the central-
ized approach, which however is unfeasible when privacy preservation
is a mandatory constraint. The adoption of inherently explainable
models also allowed us to elaborate on the aspect of interpretability.
Finally, the impact of communication and computation delays on the
FL process times has been assessed through system-level simulations:
it has been observed that leveraging edge-based environment for the
deployments of FLaaS components can significantly reduce the overall
time for the generation of a federated model.

The adoption of the proposed framework on other case studies
and services represents, in our opinion, the most interesting future
development of this work.
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