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Abstract—The decentralized nature of federated learning (FL)
poses critical challenges related to security: Clients participating
in the process may not necessarily be trustworthy and could
engage in adversarial attacks, potentially undermining the in-
tegrity and reliability of the global machine learning model.
Security concerns have been extensively investigated in traditional
FL, where collaboratively learned models are typically deep
neural networks. However, this class of models does not meet
the requirement of explainability, which is considered essential
for the trustworthiness of AI systems. In this work, we present an
analysis on security threats to FL of explainable models, namely
fuzzy rule-based classifiers (FRBCs). We outline the types of
attacks a malicious client may implement, and assess, through a
preliminary experimental analysis, the impact they have on FL of
FRBCs in terms of global model performance. We also compare
these findings with the effects of the same or similar well-
established attacks in traditional FL of neural network models.
Finally, we provide insights to improve the security of FRBCs
learned in a federated fashion.

Index Terms—Federated Learning, Explainable Artificial In-
telligence, Fuzzy Rule-based Classifiers, Security

I. INTRODUCTION

Users, companies, institutions, and government entities
are posing increasing attention towards trustworthiness in
Artificial Intelligence (AI), given its evident pervasive-
ness in our daily lives. The European Commission (EC),
for example, enacted the “AI Act” in June 2024 (online
artificialintelligenceact.eu), thus introducing the first common
regulatory and legal framework for AI in Europe. The docu-
ment partly builds upon a previous initiative documented in the
“Ethics Guidelines for Trustworthy AI” [1]: a high-level expert
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group on AI established by the EC identified the requirements
an AI system must meet to achieve trustworthiness, which
are lawful, ethical, and robust. Among technical requirements,
transparency and privacy play a crucial role.

The ability to understand how a model works and why
decisions are made are fundamental aspects of transparency in
AI and at the core of a branch named “explainable AI” (XAI)
[2], [3]. Models like decision trees and rule-based systems are
typically referred to as interpretable by-design, as they can be
traced back to collections of rules in the form “IF antecedent
THEN consequent”. Hence, the inference process turns out to
be highly understandable to human observers. Other classes
of models, such as Neural Networks (NN) and Deep Learning
(DL), entail an inherent complexity that prevents an immediate
understanding of their behavior: for this reason, they are
typically referred to as black-box models and require adoption
of post hoc techniques to explain their predictions.

The growing need for explainable AI intersects with the
challenges posed by the privacy requirement. With the in-
creasing number of widespread smart and connected devices,
the traditional paradigm of centralized machine learning (ML)
suffers from a fundamental problem: data owners are reluctant
to share their data assets for privacy concerns, and this
hampers the training of models that are typically data hungry.
Similar considerations apply to institutions and companies
that handle sensitive information, such as hospitals or banks,
as their data is organized in isolated data silos and cannot
be shared with other parties. To overcome this challenge,
Federated Learning (FL) [4], [5] has recently been proposed as
a paradigm to enable collaborative learning of ML models. In
FL, the learning objective is achieved by aggregating model
updates or statistics computed locally by participating data
owners: this approach eliminates the need to gather data at a
central location for training an ML model. The most popular
implementations of FL approaches involve NN models and
stem from a protocol known as Federated Averaging (FedAvg)
which allows the standard optimization algorithm (stochastic
gradient descent, SGD) to be performed in a decentralized
setting. As a consequence, efforts to design AI systems that
comply with the privacy requirement have mainly addressed



the FL of black-box models, thus overlooking the explainabil-
ity requirement.

Several works recently attempted to simultaneously meet
the requirements of privacy and explainability, and they fall
within a research topic named Fed-XAI [6], [7], acronym for
FEDerated learning of eXplainable AI models. The Fed-XAI
goal is achieved using post hoc explainability techniques [8],
[9] or interpretable by-design models [10]–[13].

In this paper, we refer to FL of interpretable by-design
models, focusing on a recent approach for FL of fuzzy rule-
based classifiers (FRBCs) [14], which have proven effective
in classification tasks on tabular data in heterogeneous setting,
that is, when the local data of different participants follow
different distributions. However, the distributed nature of FL
expands the surface of attack that an adversary can exploit
to interfere with the learning process of an ML model. In
this work, our main focus lies on security threats related to
adversarial attacks by malicious clients in FL of FRBC.

Security issues in traditional FL have been widely studied
[15]–[17], typically assuming that FedAvg (or a variant) is
used as the aggregation strategy and NN-based models are col-
laboratively learned. In particular, most attacks that a malicious
adversary can implement are specific to such a class of models
and aggregation strategy. For other approaches, it is crucial
to understand how attacks can be crafted and to quantify
the impact these may have on the learning process and the
accuracy of the final model. In the Fed-XAI area, to the best
of our knowledge, security issues have not been adequately
investigated so far. The present work aims to partially fill this
gap by analyzing the security threats to FRBC in FL. The main
contributions of this work can be summarized as follows:

• we thoroughly describe the different types of attack a
malicious client may implement and their impact on the
FL of FRBC;

• we carry out a preliminary experimental analysis on two
classification datasets to evaluate how the attacks affect
the performance of the FRBC learned in a federated
fashion;

• in the experimental analysis, the impact of the designed
attacks for FL of FRBC is also compared with the impact
of same or similar well-established attacks for traditional
FL of NN-based models.

The rest of the paper is organized as follows. Section
II describes background and related works on Fed-XAI and
common attacks in traditional FL. Section III provides some
preliminaries on FL of FRBC, while in Section IV we outline
the security threats for the FL of FRBC. Section V describes
the experimental setup and results on the impact of attacks on
classification models. In Section VI, we draw conclusions.

II. BACKGROUND AND RELATED WORKS

In this section, we first provide a brief background on FL
and Fed-XAI, reviewing the most relevant recent work in the
area. Then, we outline the security threats in traditional FL.

A. Federated Learning and Fed-XAI

Traditional FL [15], [18] typically involves a horizontal
partitioning scenario (that is, clients have different samples
over the same feature space) and a centralized communication
topology, with the orchestration of a central server. Also, it
deals mainly with the NN and DL models. The training stage
of such models, in fact, is based on the optimization of a
differentiable cost function, which can be easily achieved in
the federated context by means of the iterative round-based
FedAvg protocol [4]. In each round, the following steps are
performed: (i) the central server sends the current global model
to selected data owners; (ii) each selected data owner updates
the model by performing some epochs of SGD on its local
data; (iii) each selected data owner sends back the updated
model to the server; (iv) the server takes the average of the
locally updated models, weighted according to the number of
samples, to obtain a new global model. Each local update
shares the same structure (i.e., model architecture), making
it readily possible to align models for aggregation.

Interpretable by-design models typically exploit optimiza-
tion strategies that are not immediately compliant with Fe-
dAvg: as a consequence, their learning algorithm needs to be
properly reworked to accommodate the FL setting. Several
works in the Fed-XAI area have pursued this goal [6], [7]. The
authors in [10] presented an approach for FL of a rule-based
system for regression tasks. A federated version of the fuzzy
C-Means algorithms is used to produce a global clustering of
scattered data. Based on the discovered clusters, the parameters
of the antecedent part of the rules are determined, whereas
the parameters of the consequent part are adjusted with a
federated gradient-based learning scheme. An alternative one-
shot procedure has been proposed in [11]: Each data owner
learns a rule-based model from its local data and sends it
to the server. Then, the server aggregates the received rules
by juxtaposing the rule bases collected from clients and by
resolving possible conflicts. Federated versions of the decision
tree induction algorithm have also been proposed. The authors
in [13] proposed an approach for FL of a fuzzy regression tree:
A single tree is generated on the server side, using aggregated
statistics sent by the clients at each round.

Although FL for interpretable regression models has re-
ceived some attention, only very few works have addressed
their classification counterparts. The IBM FL framework [19]
implements an adaptation of the ID3 algorithm for the FL
setting. However, the framework is not open source.

Notably, all the above-mentioned works comply with the
requirements of privacy and explainability, but none of them
addresses the security aspect, which, however, is equally
crucial to achieve trustworthiness in AI systems.

B. Security threats in traditional FL

Several recent surveys [15]–[17] provide comprehensive
reviews of security in FL. In this section, we highlight the
key elements of security threats in traditional FL, focusing on
the typical scenario of horizontal FL and classification tasks,



and using the taxonomy outlined in one of the most recent
surveys [17].

In a centralized FL topology, insider attacks can be carried
out by clients or by server. A further important distinction
is made based on the attacker’s goal: a malicious attacker
tries to interfere with the FL process; an honest-but-curios
attacker instead tries to obtain private information about other
participants but still adhering to the FL protocol and without
interfering with the learning process.

Attacks can be categorized according to several taxonomies.
The attack objective distinguishes between targeted or back-
door attacks, aimed at injecting a secondary task into the
model, and untargeted attacks aimed at damaging the model
performance. In a backdoor attack, the adversary introduces
an unwanted pattern into the system. The objective is to
achieve high performance on the backdoor subtask without
affecting the performance of the global model on its main
task [20]. Consequently, the attack is particularly difficult
to detect. A further taxonomy is proposed for training-time
attacks from adversarial clients (which is one of the most
common scenarios) and relates to the poisoned part of the FL
process: data poisoning attacks and model poisoning attacks.

Data poisoning indicates a family of attacks in which the
adversary manipulates the private data of corrupted clients.
Traditional data poisoning attacks include random flipping,
poisoning samples, and out-of-distribution attacks:

• in a random flipping attack the adversary alters a fraction
of the labels associated with the training samples in the
private local dataset by randomly reassigning them;

• in a poisoning samples attack the adversary modifies part
of the training data samples, for instance, by injecting
random noise;

• an out-of-distribution attack can be regarded as a special
case of poisoning samples attack, in which poisoned
samples are injected from outside the input distribution
of local training data.

Model poisoning indicates a family of attacks in which the
adversary directly manipulates the model parameters rather
than corrupting the local data. By altering the model weights
before sending them back to the server, the malicious user can
cause the aggregated global model to behave incorrectly. Tra-
ditional data poisoning attacks include optimization methods
and random weight:

• optimization methods are crafted to perform a backdoor
attack, while minimizing the differences between the
poisoned model and the aggregated model shared by the
server at the last round;

• in a random weights attack the adversary randomly gen-
erates the local model updates of the corrupted client, i.e.,
the weights of the NN-based model. As a result, it affects
the performance and reliability of the final global model.

In Section IV we present several possible data-poisoning
and model-poisoning attacks that malicious clients can operate
to FL of FRBC. For the preliminary experimental analysis, we
will mainly focus on untargeted attacks in order to offer an

unprecedented assessment of the impact of these attacks in the
context of FL of explainable classifiers.

III. PRELIMINARIES ON FEDERATED LEARNING OF FUZZY
RULE-BASED CLASSIFIER

In this work, we analyze the impact of adversarial attacks
against federated FRBCs. In the following, we first provide
some preliminaries on FRBC and then present the approach
for FL of FRBC considered in this paper, which was recently
proposed in [14].

The knowledge base of an FRBC consists of a rule base
(RB), composed of if -then rules, and a database (DB) con-
taining the definition of the fuzzy sets used in the RB. The
knowledge base is used to perform classification tasks, that is,
classify any input instance into one of the K classes in a set
Γ = {C1, . . . , CK}. The generic m-th rule Rm of an RB is
expressed as follows:

Rm : IF X1 is A1,jm,1 AND . . .AND XF is AF,jm,F

THEN Y is Cjmwith RWm (1)

where F is the total number of input features in the dataset,
Ai,jm,i denotes the jth fuzzy set of the fuzzy partition over the
ith input feature Xi, Cjm is the class label associated with the
rule, and RWm is the rule weight. The latter term represents
the degree of certainty of the classification in the class Cjm

within the subspace defined by the antecedent part of Rm, and
is calculated based on the training samples that pertain to that
region. Given a training set composed of N input–output pairs
{(x1, y1), . . . , (xN , yN )}, with xt = [xt,1 . . . , xt,F ] ∈ RF ,
t = 1, . . . , N and yt the associated label, the certainty factor
CFm is computed as the fraction between CF NUMm and
CF DENm:

RWm = CFm =

∑
xt∈Cjm

wm(xt)∑N
t=1 wm(xt)

=
CF NUMm

CF DENm
(2)

Here, wm(xt) is the activation strength, which quantifies the
alignment between the t-th input instance and the antecedent
of the generic m-th rule, and it is expressed by the formula:

wm(xt) =

F∏
f=1

Af,jm,f
(xt,f ) (3)

In the inference stage, an RB with M rules can be used
to determine the class of any given input instance x̂ =
{x̂1, x̂2, . . . x̂F }. Among possible reasoning methods, in this
work we consider the maximum matching policy: the input
instance is classified based on the rule with the highest
association degree hm(x̂), computed as:

hm(x̂) = wm(x̂) ·RWm (4)

The approach for FL of FRBC [14] is schematized in Fig.
1. It is designed to generate an FRBC in a collaborative and
privacy-preserving way using a one-shot procedure, that is, a
single communication round.

In the following, the FL process is described:
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Fig. 1. Overview of the Federated FRBC algorithm [14], illustrated with a two-client toy example. Note that typically the FL process involves more clients.

• A centralized server configures the FL process by dis-
tributing to data owners a set of hyperparameters, defining
the domain normalization and fuzzy partitioning for each
input attribute.

• Each node uses its private data to independently generate
a local RB. The rule generation phase uses the CHI algo-
rithm [21]: a fuzzy partition is defined a priori on each in-
put attribute; To improve interpretability, strong triangular
fuzzy partitions are utilized [14]. Then, a rule is generated
for each training sample. The antecedent of the rule is
determined by selecting, for each attribute, the fuzzy
set with the highest membership degree. Furthermore,
the contributions CF NUM m and CF DEN m to,
respectively, the numerator and the denominator in the
formulation of CF (Eq. 2) is stored. Duplicate rules are
discarded, and the final local RB is sent to the server for
centralized processing. In particular, a local RB based
on linguistic fuzzy rules does not reveal raw data, thus
ensuring privacy preservation.

• The server aggregates the local RBs into a final RB. Rules
without duplicates or conflicts are directly inserted into
the final model. For each set DRm of duplicate rules
(i.e., same antecedent and same consequent), a single rule
Rm is included in the final RB and the weight RWm is
calculated as the ratio of the aggregated numerator to the
aggregated denominator contributions:

RWm =

∑
Ri

m∈DRm
Numi

m∑
Ri

m∈DRm
Deni

m

. (5)

In the case of conflicting rules (that is, same antecedent
and different consequent), only the rule with the highest
weight is included in the final RB.

The generated FRBC represents the federated model and can
be distributed to each node for inference purposes.

IV. SECURITY THREATS TO FRBC IN FL

The procedure for FL of interpretable FRBC described
in Section III naturally deviates from the traditional FL ap-
proaches, which typically relies on FedAvg. In FedAvg, model

updates are shared with the server at each round, whereas in
FL of FRBC, clients share rule-based models derived from
private data for centralized one-shot aggregation.

In this section, we illustrate possible attacks that a malicious
client can implement within the context of FL of FRBC. To
this end, we consider the following setup: The malicious client
has access to local data and the model, and it has complete
knowledge of how the entire FL algorithm works, including
both the local learning phase and the global aggregation phase.
Notably, the server is not directly affected by any adversary:
we assume a honest-but-curious server, as is typical in the
horizontal FL literature [5], which always adheres to the
protocol defined for the execution of the ML algorithm.

In the following, we outline the adversarial attacks to FL
of FRBC distinguishing between the targeted and untargeted
ones. The diagrams in this section are derived from Fig. 1,
assuming that Client 1 is malicious.

A. Targeted attack: Backdoor

A schematic representation of a targeted attack (backdoor)
to the FL of FRBC is shown in Fig. 2.

Adversary Client 1: Backdoor

...
...

X y

CF Num CF DenAntecedent Consequent

CF DenAntecedent Consequent CF Num

CF Num CF DenAntecedent Consequent

CF Num CF DenAntecedent Consequent

Fig. 2. Backdoor attack. The adversary injects the desired rule directly in the
local RB of the corrupted client.

The global interpretability of the FRBC enables the ad-
versary to immediately detect which rules are generated in
the local RB. Thus, a backdoor is particularly easy to create
in this context. The malicious client can inject a new rule
into the local RB to accomplish a desired classification task
as follows: the antecedent part identifies a specific fuzzy



region in the feature space (typically different from those
captured by existing rules), the consequent part holds the
desired classification label, and the contribution to rule weight
is arbitrarily set to promote the rule in case of conflicts in the
aggregation stage.

The backdoor attack typically has little or no impact on
performance. In fact, the influence of a single rule is localized
in the feature space and only comes into play when it is
prioritized during conflict resolution or selected at inference
time based on the maximum matching policy. For this reason,
the experimental analysis proposed in this paper focuses on
untargeted attacks, which damage the performance of the
overall model, as detailed in the next section.

B. Untargeted attacks

Untargeted attacks aim to damage the performance of the
global model. Based on the literature review reported in
Section II, we envision five untargeted attacks to FRBC in FL:
random flipping, out-of-distribution, random weights, random
consequent, random rule, schematically represented in Fig. 3.

Random flipping (Fig. 3a) implements the data poisoning
attack, as in traditional FL: it consists of the manipulation of
target labels in a subset of the private training set of a corrupted
client. The attack affects two key aspects of the resulting RB.
First, the rules generated from the altered data samples will
reflect the modified class label. Second, the contribution to the
numerator of the rule weight is altered for all rules activated
by the modified samples.

The out-of-distribution (Fig. 3b) data poisoning attack intro-
duces new samples into the private training set of a corrupted
client, as in traditional FL. However, unlike traditional FL, this
type of attack has an effect that closely resembles backdoor
attacks in the context of FRBC. In fact, the CHI algorithm used
for local rule generation tends to create a new rule for each
injected sample, which, by definition, is crafted to deviate from
the distribution of the client’s original data. As a consequence,
new rules are included in the local RB, with no or limited
effect on the rules generated by the in-distribution samples.

While the above-mentioned data poisoning attacks are obvi-
ously agnostic with respect to the model learned in a federated
fashion, model poisoning attacks need to be revisited in the
context of FRBC. They can be implemented by altering
specific subsets of the rules components.

A random rule (Fig. 3c) attack involves randomizing all
components of the rules. It is the most disruptive model
poisoning attack, meaning that it completely overrides the rule-
based generated by local data.

A random classification (Fig. 3d) attack randomizes all but
the antecedent part of the rules. By altering the consequent
part and the contribution to the rule weights, it potentially
introduces new rules into the final model and impacts the
conflict resolution stage.

A random weight (Fig. 3e) attack modifies only the contri-
bution to the rule weights (local statistics for the computation
of the certainty factor). As a consequence, it does not introduce
new rules, but only impacts the conflict resolution stage.

Adversary Client 1: Random flipping

Antecedent Consequent CF Num CF Den

CF Den

CF Num CF Den

...
Antecedent Consequent

Antecedent Consequent

...

X y
CF Num

(a) Random Flipping. The adversary alters a subset of class
labels in the local training set.

Adversary Client 1: Out-of-distribution

...

X y
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CF Num CF DenAntecedent Consequent

CF Num CF DenAntecedent Consequent
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(b) Out of Distribution. The adversary injects new samples
outside of the local data distribution into the local data.

Adversary Client 1: Random rules
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...
Antecedent Consequent

...

X y
CF Num CF DenAntecedent Consequent
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(c) Random rule. All parameters of the rule base are random-
ized.

Adversary Client 1: Random classification

CF Num CF Den

...
Antecedent Consequent

...

X y
CF Num CF DenAntecedent Consequent

CF Num CF DenAntecedent Consequent

(d) Random classifcation. Consequent parameters and contri-
bution to rule weights are randomized.

Adversary Client 1: Random weights

CF Num CF Den

...
Antecedent Consequent

...

X y
CF Num CF DenAntecedent Consequent

CF Num CF DenAntecedent Consequent

(e) Random weights: Contribution to rule weights are random-
ized.

Fig. 3. Security attacks to FRBC in FL. Dark red indicates the poisoned
part of the attack; Light red indicates a possible indirect modification on the
locally learned rule-based system.



V. EXPERIMENTAL ANALYSIS

This section presents a preliminary experimental analysis
to assess the impact of the threats described in Section IV
on FRBC in FL. We first describe the experimental setup and
then discuss the experimental results. Also, we report on a
comparative analysis between FL of FRBC and traditional FL
of NN-based model, evaluating the impact of same or similar
well-established attacks. For the NN-based model, we consider
a multilayer perceptron (MLP).

A. Experimental setup
In our experiments, two binary classification datasets are

considered as in [14]: MAGIC Gamma Telescope [22] and
Quality of Experience (QoE) for video streaming [23]. Data
among clients are forced to be non-i.i.d. (non-independent
and identically distributed), as is typical in horizontal FL,
considering 20 clients for Magic and 30 clients for QoE.

We implemented the proposed untargeted attacks to FL of
FRBC for both case studies, with an increasing percentage
K of corrupted clients. We consider the case K = 0% as our
baseline, i.e., no malicious clients, and evaluate each attack for
K ∈ {5%, 15%, 25%, 35%}. Each configuration is repeated
three times with different random seeds to sample the clients
that act maliciously. We will report the average values in the
results. To assess the performance of the federated FRBC
across various configurations, we resort to centralized test sets,
which follow the overall data distribution for both datasets.

Table I reports summary statistics of the adopted datasets.

TABLE I
DATASETS DESCRIPTION

Num. of
features

Training set
size (overall)

Num. of
clients

Num. of
malicious clients

Test set
size

Magic 10 15210 20 {0, 1, 3, 5, 7} 3810
QoE 30 25311 30 {0, 2, 4, 7, 10} 6505

In the following, we report the parameters configuration for
FL of FRBC, for FL of MLP and for the attacks.

FL of FRBC requires setting the number Tf of fuzzy
sets used to partition each input attribute f ∈ F . Following
guidance from the relevant literature [14], we set Tf = 5
for Magic and Tf = 3 for QoE, for each feature, as these
values have been proven to ensure an optimal balance between
performance and explainability. The MLP architecture consists
of two fully connected layers with ReLU activation functions,
containing 256 and 128 neurons, respectively. The output layer
uses a sigmoid activation function to classify sample instances
into two possible classes. The number of local epochs is set
to 3, the minibatch size is set to 32, and the number of rounds
is set to 10. We did not perform extensive hyperparameter
optimization; instead, we simply ensured that the classification
results align with the state-of-the-art and focused primarily on
analyzing the impact of security threats. Notably, all attacks
described in the following are applied independently to each
malicious client.

Data poisoning attacks are carried out identically for both
models. In random flipping (RF) we randomly sample a label

in the set Γ = {0, 1} for each training sample. We recall
that both case studies involve binary classification tasks and
therefore, on average, half of the labels are altered. The out-
of-distribution (OoD) attack is executed by injecting samples
equal to 5% of the size of the training set. The generation of
OoD instances involves a uniform random sampling of values
within the range of each input feature. Each generated sample
is assigned a randomly sampled label from Γ.

For FRBC, model poisoning attacks are configured as
follows. In random weights (RW), the contribution to the
numerator and to the denominator in the formulation of CF
is randomly sampled from a uniform distribution in [0, 100].
Random classification (RC) extends RW by also applying
a perturbation to the consequent part of the rules, that is,
randomly sampling the label from Γ. Finally, the random rule
(RR) involves the same steps as the RC and also alters the
antecedent part of the rules by randomly sampling a fuzzy set
in the fuzzy partition of each attribute.

For MLP, RW is obtained by generating the model updates
with uniform random sampling of values within the range
[−0.5; 0.5].

Performance results are reported as the macro-average F1
score on the test set. For FRBC, we also report the number of
rules of the global model. This highlights the impact of attacks
that introduce new patterns into the final system, providing
further insight into the consequences of adversarial behavior.

B. Experimental results: attacks to FL of FRBC

Figure 4 illustrates the impact of adversarial attacks on
federated FRBC in terms of the average F1-score on both
datasets, as the number of corrupted clients increases.
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Fig. 4. Impact of attacks on FL of FRBC in terms of average F1-Score, with
increasing number of malicious clients.



In general, the extent of performance degradation depends
on the type of attack. As expected, the drop in F1-score tends
to worsen as the number of malicious clients increases. For the
most impactful attack, performance severely deteriorates when
35% of the clients are malicious: F1-score drops from 0.76 to
0.61 (around 20%) and from 0.74 to 0.55 (around 25%) in the
Magic and QoE datasets, respectively.

In the Magic data set (Fig. 4a), the attacks that most
significantly degrade the performance of the model are RF and
RC. In these cases, the antecedent parts of the rules remain
unchanged, and thus they model regions of the feature space
are actually relevant to the dataset. Instead, the consequent part
(and the class label in particular) is randomized, significantly
undermining the model classification ability. The OoD and
RR attacks have minimal impact on performance: they tend to
introduce additional rules into the final FRBC, but such rules,
being randomly generated, do not model the distribution of
real data. As a consequence, they are seldom activated during
inference on the test. The RW attack, in which only the con-
tributions to rule weights are altered, still shows a noticeable
effect on the performance of the model: rule weights, in fact,
play a key role for the conflict resolution stage and for rule
selection at inference time.

Similar results are observed for the QoE dataset (Fig. 4b):
RF and RC attacks are the most harmful, whereas RW has
a milder effect. RR and OoD attacks do not affect model
performance at all.

In general, we observed that adversarial attacks can poten-
tially modify existing rules and create new ones, affecting both
the metrics and the complexity of the global FRBC. Table II
reports the impact of the various attacks on the number of
federated FRBC rules for the two datasets, with an increasing
number of corrupt clients.

TABLE II
IMPACT OF ATTACKS ON THE NUMBER OF RULES OF THE FEDERATED

FRBC, WITH INCREASING NUMBER OF MALICIOUS CLIENTS. THE
NUMBER OF RULES IN CASE OF NO ATTACK IS REPORTED WITHIN

PARENTHESIS FOR EACH DATASET. AVERAGE VALUES.

Percentage of malicious clients
Attack 5% 15% 25% 35%

Magic (1800)
RF, RC, RW 1800 1800 1800 1800

OoD 1821 1893 1931 1981
RR 2018 2542 2960 3491

QoE (4809)
RF, RC, RW 4809 4809 4809 4809

OoD 4883 4951 5052 5175
RR 5559 6232 7190 8437

RR attack clearly has the most significant impact, as mali-
cious client injects new random rules into the system. Even in
the case of OoD attacks, some additional rules are introduced,
albeit to a lesser extent compared to RR. In fact, it is worth
recalling that the OoD samples injected for each client amount
to only 5% of the size of the local training set. Obviously, the
other attacks (RF, RC, RW) do not alter the number of rules,
since none of them modifies the antecedent part of the rules.

C. Comparative analysis: attacks to FL of FRBC and to FL
of MLP

MLP slightly outperforms FRBC in both datasets. The
average F1-score is 0.78 on Magic, and 0.76 on QoE. To assess
the relative impact of attacks on the two models, we report the
percentage degradation of the average F1-score in Fig. 5, with
an increasing number of malicious clients.

The FRBC is much more susceptible than the MLP to the
RF attack on both datasets: on the one hand, in the rule-based
system, noisy labels are directly reflected in conflicting or
incorrect rules in the global model. On the other hand, we
argue that the MLP is more robust to such noise because
the local adjustment of weights and the global averaging
aggregation stage tend to mitigate its impact. For OoD attacks,
both models show minimal degradation.

The effect of RW attacks is considerable for both models. As
we have discussed in the previous section, for FL of FRBC the
impact on performance depends on whether model poisoning
involves randomizing the contribution to rule weights and
consequents (RC, highest impact), only the contribution to rule
weights (RW, medium impact) or all the rule parameters (RR,
lowest impact). For FL of MLP, the RW attack consists of
randomizing the values of the weights: The effect is limited
on the QoE dataset while there is a noticeable performance
degradation on the Magic dataset with a high number of
malicious clients.

In general, the FRBC is less robust than the MLP to
the RF data-poisoning attack and also exhibits considerable
vulnerability to certain model-poisoning attacks (RC and RW).
Defense mechanisms aimed at enhancing the security of FL
of FRBC should be oriented towards identifying these attacks
and mitigating their effects. Refinement of rule aggregation
processes and integration of advanced adaptive weighting and
conflict resolution strategies could significantly enhance the
robustness of FRBC while preserving their inherent inter-
pretability. In addition, the interpretable nature of FRBCs
could be leveraged to evaluate candidate rules shared by
clients, enabling identification of potential backdoor attacks.

VI. CONCLUSION

In this paper, we investigated the impact of adversarial
attacks to explainable models, namely fuzzy rule-based classi-
fiers (FRBCs), in federated learning (FL). First, we present the
attacks that malicious clients can operate to federated FRBC,
considering the peculiarities of the model and the aggregation
strategy, necessarily different from those of the traditional FL
setting. Second, an experimental analysis was performed to
assess the robustness of federated FRBC under untargeted
attacks (i.e., those aimed at damaging the model performance)
by using two real-world case studies. Third, we compared the
effect of same or similar attacks to federated FRBC and to
federated black-box model, namely Multi-Layer Perceptron.
The results revealed that the FRBC exhibits high susceptibility
to untargeted attacks, particularly those involving label manip-
ulations or alterations to the local rule bases. Future work will
focus on the defense mechanism against adversarial attacks to
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Fig. 5. Comparison of the impact of adversarial attacks on FL of FRBC and on FL of MLP in terms of percentage degradation of average F1-score.

federated FRBC, aiming to enhance security while maintaining
the inherent privacy and explainability of the AI system, which
are considered pivotal for its trustworthiness.
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