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Abstract—Ensuring trustworthiness of AI systems by enforc-
ing, for instance, data privacy and model explainability, has
become urgent in our society. Recently, the Federated Learning
(FL) paradigm has been proposed to preserve data privacy
during collaborative model learning. Unfortunately, FL poses
critical challenges in the application of post-hoc explanation
methods which are used to explain opaque models such as neural
networks. In this paper we present an approach for enhancing
the explainability of opaque models generated according to the
FL paradigm. We focus on one of the most popular methods,
namely SHapley Additive exPlanations method (SHAP). Given
an input instance, SHAP can explain why an opaque model
generated that specific output prediction from the input values.
To provide the explanation SHAP needs access to a background
dataset, typically consisting of representative training instances.
In FL setting, however, the training data are scattered over
multiple participants and cannot be shared due to privacy
constraints. On the other side, the background dataset should
be representative of the overall training set. To this aim, we
propose to adopt a federated Fuzzy C-Means clustering for the
generation of a common background dataset made up of cluster
centers. The resulting background dataset is representative of the
actual distribution of the data and can be made available to all
participants without violating privacy, thus ensuring accuracy
and consistency of the explanations. A thorough experimental
analysis shows the validity of the proposed approach also in
comparison with baseline and alternative approaches.

Index Terms—Federated Learning, Explainable Artificial In-
telligence, SHAP, Fuzzy Clustering, Fuzzy C-Means

I. INTRODUCTION

Explainability and data privacy are two cornerstones for
the trustworthiness of Machine Learning (ML) and Artificial
Intelligence (AI) systems [1]. Such increasing awareness about
trust has recently prompted academia and industry to devise
models and techniques capable of meeting these requirements.

The data privacy concern has motivated the development
of new paradigms for training ML models in a decentralized
setting, including Federated Learning (FL) [2]. FL allows
multiple parties to collaboratively train an ML model removing
the need to centralize data for training. In essence, a shared
global model is learnt in an iterative, round-based, procedure
through the aggregation of model updates computed locally
by remote data owners. The FL approach is viable over both
horizontally (different instances, same features) and vertically
(different features, same instances) partitioned data. Typically,
models learned in a federated fashion are those optimized
through Stochastic Gradient Descent or its variants: this makes
FL immediately suitable for Neural Networks (NNs), which
are generally deemed as “opaque” models or “black boxes”
for their characteristic of being hardly interpretable.

The design of techniques to explain opaque models, as
well as the investigation of inherently interpretable models,
is at the core of Explainable AI (XAI) [3], [4]. The scope
of an explanation can be traced back to two concepts widely
employed in the specialized literature, namely global and local
interpretability: global interpretability relates to the structural
properties of a model, whereas local interpretability is as-
sociated with the inference process and focuses on how the
output is produced for any single input instance. Obtaining an
explanation for a decision made by an opaque model involves
a process of reverse engineering and is typically achieved
through the adoption of the so-called post-hoc techniques.

This study is positioned at the intersection between FL and
XAI: it has the objective of designing an approach for the
adoption of a post-hoc technique to explain a model learned
according to the FL paradigm. A Multi Layer Perceptron
Neural Network (MLP-NN) is considered as an opaque model
and the popular SHAP (SHapley Additive exPlanations) [5]
method is considered as post-hoc technique.

SHAP is one of the most popular post-hoc techniques
used to explain ML model predictions in terms of feature
importance by estimating the so-called Shapley values [6].
Based on game theory, SHAP and its variants can be inter-
preted as methods that exploit knowledge of the training set
for evaluating the explanation of any prediction. Specifically,
besides the model and the instance to be explained, SHAP
necessitates a “background dataset”, that provides a reference
distribution for the estimate of the contributions of individual
features. As the choice of the background dataset can impact
the outcome of the explainability process, the training set is
commonly employed for this purpose. The high computational
complexity of SHAP, however, precludes the use of the
entire training set when it is fairly large and the adoption
of numerosity reduction techniques becomes essential [7].
Another major challenge arises in the federated setting: the
training set is not available in its entirety to any party as it is
scattered over multiple physical locations. On the one hand,
the privacy requirement prevents raw data from being moved
and therefore they cannot be used as background dataset. On
the other hand, if any participant relies on its own training
set as background dataset, the property of consistency of
explanations may be lost. In the FL context, consistency is
met if the explanations of the same data instance for a global
model are the same for different participants. Evidently, SHAP
is prone to misalignment of client-side explanations especially
when the local datasets follows a non-i.i.d. (non independent
and identically distributed) partitioning.



This work describes an approach to overcome these chal-
lenges by achieving consistent and accurate explainability
using SHAP in the federated setting. In essence, a federated
clustering procedure is executed over scattered participants
local data as a data summarization technique: the resulting
cluster representatives are exploited as background dataset for
the execution of the SHAP method. Several recently proposed
techniques enable privacy preserving clustering in the FL
setting [8]–[10]. In this work we resort to the Federated
Fuzzy C-Means (FCM) implementation proposed in [10]. The
background dataset (i.e., the centers of the clusters generated
by FCM) can be shared with any participant without violat-
ing the privacy, so the consistency requirement is fulfilled.
Furthermore, the centers are representative of the entire data
distribution, ensuring accurate explanations. In this context,
an explanation is accurate if it matches the one that would be
obtained in the traditional centralized setting (i.e., when SHAP
is applied using the union of the local datasets). An extensive
experimental analysis on both regression and classification
tasks demonstrates the soundness of the proposed approach
with respect to several baseline and alternative approaches.

The rest of the paper is organized as follows: Section II
describes the background related to the SHAP method. In
section III we provide a brief overview of recent works that lie
at the intersection between FL and XAI by pursuing post-hoc
explainability. Section IV outlines the problem statement and
the proposed approach for Federated SHAP based on federated
fuzzy clustering. In Section V we describes the experimental
setup, including the other approaches used in the comparative
analysis and details about models and datasets. Section VI
report and discuss the experimental results. Finally, in Section
VII we draw some conclusions.

II. BACKGROUND: THE SHAP METHOD FOR POST-HOC
EXPLAINABILITY

SHAP is one of the most popular post-hoc methods used
to explain ML model predictions both in classification and
regression tasks. Its steadily increasing popularity is due
to several factors: it holds a solid mathematical foundation
derived from game theory, it can be applied to several kinds
of data (e.g., tabular, images, and textual data), and it is a local
method, i.e. it can explain individual predictions.

The SHAP model evaluates the importance of the features
by estimating the so-called Shapley values, a concept from the
coalitional game theory introduced in 1953 by L. Shapely [6].
The analogy between the game theory and the Shapley values
lies in the “rewards” of the “players” in a “game”: as the
players of a coalitional game contribute in different ways to
the total game payout (whereby Shapley values corresponds
to different rewards), the F features of a dataset contribute
differently to the individual prediction of a model. Specifically,
the prediction can be expressed as follows:

ŷi = f(xi) = ϕ0 +

F∑
j=1

ϕj (1)

where f is the predictive model, xi is a generic F -dimensional
input instance, ϕ0 is a reference value computed as the average
of the predictions values in a background dataset, and ϕj

are the Shapley values. Thus, when the Shapley value ϕj is
positive (negative), the j-th feature has a positive (negative)
impact on the individual model prediction. Furthermore, the
least and the most impactful features are those with the lowest
and highest absolute Shapley values, respectively.

The computation of the Shapley values involves testing all
the possible combinations of the features (named coalitions,
following the analogy with the players in game theory) by
perturbing the input instance xi with values coming from
a background dataset, also referred to as reference dataset.
The high computational complexity of the exact calculation
of the Shapley values has recently prompted the design of
several approaches for estimating them in an efficient way.
Among them, KernelSHAP, introduced in the Lundberg and
Lee seminal work [5], is widely used as it is model-agnostic,
that is, it can be flexibly applied to explain any model.

Three entities are required to generate an explanation with
KernelSHAP: an input instance xi, the predictive model f ,
and the background dataset. The background dataset serves as
a reference when xi is perturbed: the features not included in
a coalition are set to the values of the corresponding features
of instances randomly sampled from the background dataset.
Choosing a background dataset that is representative of the
actual data distribution is important for an accurate estimate of
the Shapley values [11]. Theoretically, the background dataset
should coincide with the set of data used for learning the f
model. However, KernelSHAP still entails a high computa-
tional complexity and using the whole training set is often
impractical in real-world applications: thus, it is a common
practice to reduce the numerosity of the background dataset
(e.g., through sampling) to speed up the estimation of the
Shapley values with KernelSHAP [7], [11].

III. RELATED WORKS

The use of Shapley values within the context of FL mainly
concerns two substantially different aspects that merit clarifica-
tion: on the one hand, techniques based on Shapley values have
been adopted to provide a fair evaluation of the contributions
of participants and, consequently, a robust weighting scheme
for the FL process, as proposed for instance in [12]. On
the other hand, Shapley values are adopted for explainability
purposes with regard to predictions of a model learned in the
federated setting. The present work is in line with the latter
objective. Thus, in the following we report the most recent
advances on the topic.

Explainability in FL has been pursued using both ex-
ante approaches [8], [13]–[15] and post-hoc techniques [16],
[17]. SHAP method evidently falls into the latter category,
but it is not the sole approach employed for this purpose.
Chen et al. [18], for instance, have proposed a framework
for explainability in vertical FL based on a federated coun-
terfactual explanation method. The counterfactual approach
aims to explain a single prediction by assessing the smallest



alteration needed in the input instance to prompt the clas-
sification into a predefined class. Since counterfactuals are
derived based on local private data, the property of consistency
of explanations among clients is not met. Fiosina [19] has
introduced a method for consistent explainability in horizontal
FL based on averaging integrated gradients. The approach
yields a global feature importance score but does not address
the problem of local explainability. Bogdanova et al. [16]
have introduced a novel approach, named DC-SHAP, aimed
at achieving consistent explainability for both horizontally and
vertically partitioned data within the Data Collaboration (DC)
paradigm. Consistency in the horizontal setting is obtained
by employing a set of auxiliary synthetic data shared among
the users as background dataset, thus mitigating the feature
attribution discrepancies among the users. The DC paradigm,
however, differs from mainstream FL because it envisages
that clients share data (and not models) with the server, after
the application of an irreversible transformation. Subsequently,
the server combines these intermediate representations into a
unified dataset for centralized training of an ML model, which
is eventually sent back to the participants.

An adaptation of SHAP has been proposed in [20] as post-
hoc method for feature importance explanation in the health-
care domain, based on a hierarchical framework: a first-level
FL process allows to collaboratively train a predictive model
for patients in the same hospital, whereas a second-level FL
process aggregates predictive models coming from different
hospitals and generate a final model. The consistency problem
is addressed by generating a unique background dataset as
follows: synthetic instances are sampled from a Gaussian
distribution, whose parameters are estimated for each feature
in a hierarchical way, by combining the parameters estimated
at the first and at the second level. Results show that there is
a discrepancy, albeit not severe, with the centralized feature
importance score (i.e., when the background is derived from
the whole training set). Furthermore, it is arguable that the
assumption that marginal data distribution follows a Gaussian
distribution is rarely met in practical applications.

Recently, authors in [21] have proposed an approach to
apply SHAP in horizontal FL. In a nutshell, the federated
explanation for a prediction made by the FL model is obtained
by averaging the explanations of the participants. Consistency
is evidently met, as any client can rely on the average explana-
tion, and an experimental analysis in an i.i.d. setting highlights
that the federated explanations are also consistent with the
centralized ones. Nevertheless, the approach is based on the
assumption that test data are accessible to all participants: in
real-world applications where privacy must be preserved even
during inference time and explanations must be obtained with
low latency this option is not viable.

IV. FEDERATED SHAP BASED ON FEDERATED FUZZY
CLUSTERING

In this section we first outline the scenario considered in
this work and then we describe the proposed approach for
obtaining SHAP explanations in the FL setting.

A. Problem Statement

Figure 1 schematizes the setup investigated in this work.

Fig. 1. High level view of the setup investigated in this work.

A star communication topology is considered: multiple par-
ties, with horizontally partitioned data, collaborate in training
an FL model under the orchestration of a central server. We
assume that such model is opaque (i.e., it does not feature
inherent interpretability) thus requiring the adoption of post-
hoc explainability techniques. Furthermore, we consider the
non-i.i.d. setting: local datasets may follow distributions that
are different one from each other and from the overall data
distribution. It is worth underlining that such assumptions can
be considered fair as they match the most frequent and realistic
situations encountered in the FL setting.

Let P 1, P 2, . . . , PM be M parties, also referred to as
clients, and (X1,Y1), (X2,Y2), . . . , (XM ,YM ), their own
training data. Xm indicates an Nm×F matrix of Nm records
described by F input features, and Ym indicates the vector
of the Nm associated target values.

The output of the FL process is a collaboratively learned
opaque model, which can be used for inference purpose on
previously unseen data. The objective is to endow the model
with the capability of providing local explanations: for any
single test instance, both the prediction and an associated
explanation are provided. In this work we consider the Ker-
nelSHAP variant of SHAP, as it is a model-agnostic method
widely adopted for explaining NN-based models [7], [11].

The explainability process is applied on a unique test set
that can be envisaged to be accessible for an entity that does
not have training data. For example, the test set can reside on
the central server or on a novel client that did not participate
in the FL process and just exploits the model for inference
purpose. As mentioned in Section II, KernelSHAP requires
three elements: besides the test set and the model to be ex-
plained, a representative background dataset is also needed. In
the traditional case (centralized rather than federated learning),
a background dataset is simply generated by sampling or
summarizing the training set, for example via clustering. In the
FL setting, however, the training set is spread over multiple
participants and cannot be shared due to privacy reason.

The main challenge of adopting SHAP in the FL setting
consists in generating a background dataset that enables accu-
rate and consistent explanations, while preserving the privacy
of data owners. Our proposed approach for FederatedSHAP is
presented in the following subsection.



Fig. 2. Sequence diagram of the federated FCM algorithm proposed in [10].

It is worth underlining that a plausible scenario involves pri-
vate test data being available on any client participating in the
FL process. As a consequence, each client could simply rely
on its own training data for the generation of the background
dataset: this would not violate privacy, since the data would
never leave the source, but would possibly undermine the
requirement of consistency in the sense that different clients
may obtain different explanations for an identical test instance
even if employing the same model (the FL one). This may be
particularly evident in the non-i.i.d. case since the local data
distributions are different. The aspect of consistency is further
discussed with empirical evidence from experimental analysis
in Section VI-C.

B. Proposed approach

Obtaining a background dataset that is both small and
representative of the entire data distribution is crucial for an
efficient and effective adoption of the KernelSHAP method.
Our proposed approach consists in generating the background
dataset by using representatives of clusters obtained by an FL
clustering algorithm. We adopt the FL procedure for the exe-
cution of the well-known FCM clustering algorithm proposed
in [10], which partitions the space into K clusters. We would
like to point out that the choice of the clustering algorithm is
not critical for our objective. In essence, the clients’ private
data are not only exploited for training the FL model, but also
undergo a federated clustering procedure. At the end, the clus-
ter centers obtained through federated clustering are exploited
as background dataset for the execution of the KernelSHAP
method. It is worth pointing out that, in this case, the actual
objective of clustering is not that of grouping instances but
rather finding a compact and representative summarization of
the scattered dataset. We observe that the choice of the number
K of clusters is independent of the clustering tendency in the
data but rather is related to the efficiency in the execution of
the KernelSHAP method and its effectiveness.

The federated FCM procedure is schematized in Fig. 2.
At the beginning the server sends to each client the config-

uration parameters (i.e., the fuzziness factor) and randomly
initializes and sends the cluster centers to the clients. The
number K of clusters is fixed by the user. The procedure
is consistent with the rationale of the traditional FCM, i.e.

alternately updating the cluster assignment of objects and
the cluster centers until convergence. The cluster assignment
evaluation takes place on the client side based on the centers
received from the server. The cluster centers are updated on
the server side. Notably, the summary statistics shared by the
clients to the server do not reveal the raw data, thus ensuring
that privacy is preserved. The procedure stops when the dis-
tance between the cluster centers over two consecutive rounds
is lower than a given threshold. Authors in [10] demonstrate
that, given the same random initialization, the Federated FCM
algorithm obtains identical results compared to the traditional
FCM applied to the union of the local datasets. At the end
of the execution of the Federated FCM, the server transmits
the cluster centers to all the entities which have joined the
federation: these centers form the background dataset.

V. EXPERIMENTAL ANALYSIS

This section describes the experimental analysis from a
twofold perspective: first, we formally describe our approach
based on Federated FCM and other alternative approaches for
generating the background dataset; then, we provide details
about datasets and models considered in the experiments.

A. Approaches for background dataset generation for SHAP

Our proposed approach can be summarized as follows:
Federated FCM The background dataset is obtained as

FedFCM ← Federated-FCMK

((
X1,X2, . . . ,XM

))
(2)

where K represents the number of clusters. In other
words, the background dataset consists of the K centers
obtained through the Federated FCM clustering algorithm
executed collaboratively by the M clients to partition the
set of data locally stored in the clients. As the results of
the FCM algorithm depend on the initial position of the
cluster centers, we repeat the procedure 10 times with
different seeds for random center initialization.

The approach is compared with baseline and alternative ap-
proaches described in the following.
Centralized The background dataset is obtained as the union

of the datasets locally stored in the clients.

Full←
M⋃

m=1

Xm (3)

This represents a baseline approach which is typically
encountered in the traditional (centralized) setup when the
whole training set can be used as background. However,
it is worth underlining that this approach is unfeasible in
the federated setting because it requires to share private
raw data, thus violating privacy. In addition, it is also
impractical from a computational point of view as the
estimation of the Shapley values with KernelShap is time
consuming and grows in complexity with the size of
the adopted background dataset. Thus, with the objective
of reducing the computational cost, we conceived two
variants, namely FCM-50 and FCM-100 by summarizing



the full background dataset using the traditional FCM
algorithm with K=50 and K=100 centers, respectively:

FCM-50← FCM50

(
M⋃

m=1

Xm

)
(4)

FCM-100← FCM100

(
M⋃

m=1

Xm

)
(5)

Since traditional FCM is applied on the union of training
data, even these variants are not viable in the federated
scenario where privacy is a mandatory requirement.

Random The background dataset is obtained by randomly
sampling K instances from a uniform distribution over
the input space:

Random← SampleK (U (a, b)) (6)

where a and b are the vector of lower and upper bounds
of the input features, respectively. Notably, random sam-
pling is repeated 10 times with different seeds.
This approach assumes the knowledge of realistic val-
ues for the lower and upper bounds of each feature,
which is reasonable in many real-world applications.
Since synthetic data are generated, the approach does not
require disclosure of private raw data and can be safely
adopted in the federated setting. However, being not data-
driven, it likely results in a background dataset that is not
representative of the actual distribution of data.

Local Let us assume that the entity interested in the expla-
nation is the m-th generic client which has participated
in the training. The background dataset is obtained as
follows:

Localm ← FCMK (Xm) (7)

For any client, the background dataset consists of the
K centers obtained through the execution of the FCM
clustering algorithm over its own local training set. The
local approach ensures privacy preservation but poses the
problem of the consistency of explanations: the explana-
tions obtained from the M clients may differ from each
other even if the instance to be explained is identical.

Table I provides a comparison of the four approaches with
regard to the properties of the resulting background datasets.

TABLE I
PROPERTIES OF THE BACKGROUND DATASET BASED ON THE APPROACH

EMPLOYED FOR ITS GENERATION.

Ensure consistency
of explanations

Represent the actual
data distribution

Preserve
privacy

FedFCM ! ! !

Centralized ! ! %

Random ! % !

Local % Only local data !

In our experimental analysis the parameter K is set to 50,
which is found as a reasonable value in the R1 and Python2

implementations of KernelSHAP. A comprehensive investiga-
tion of the impact of such parameter is an interesting future
development of this work. A preliminary insight is hereby
provided within the centralized approach, where the size of
the background dataset varies in {50, 100, |

⋃M
m=1 X

m|}.

B. Datasets and data distribution scenarios

We consider a cross-silo FL setting, in which raw data are
scattered over ten different clients following a horizontal parti-
tioning scheme. The objective of the analysis is to discuss the
appropriateness of the proposed approach based on Federated
FCM in terms of accuracy and consistency of explanations.

It is worth underlining that the approach is versatile and
applicable to both regression and classification tasks: in fact,
KernelSHAP is readily suited for generating explanations for
both families of tasks and the clustering procedure used for
data summarization is clearly decoupled from the supervised
learning stage. Thus, we employed two classification datasets,
Magic and Rice, and two regression datasets, California and
Abalone, all characterized by numerical features.

As per the setup discussed in Section IV-A, each dataset is
divided into a training set, which is then further partitioned
across clients, and a unique test set, which follows the overall
data distribution, with a 90%-10% split percentage. Table II
summarizes the characteristics of the four datasets.

TABLE II
DATASETS DESCRIPTION.

Dataset Source Task N Ntrain Ntest F

Magic (MA) [22] C 19020 17118 1902 7

Rice (RI) [22] C 3810 3429 381 7

California (CA) [23] R 20640 18576 2064 8

Abalone (AB) [22] R 4177 3759 418 7

The Magic dataset (Major Atmospheric Gamma Imaging
Cherenkov Telescopes) is generated by a Monte Carlo pro-
gram which simulates the registration of high energy gamma
particles in an atmospheric Cherenkov telescope. The classi-
fication task consists in discriminating between background
and gamma signal events. The Rice dataset is generated from
pictures of two rice species. From each image, several morpho-
logical features are extracted and a binary classification task is
enabled. The California dataset contains housing information
collected in California from the 1990 Census. The regression
task consists in the prediction of the median house value
using as input spatially aggregated information, such as the
housing median age, over the USA California state. The
Abalone dataset contains data on the abalone marine snails.
The regression task consists in exploiting several shell physical
measurements to determine the number of rings, which is

1https://cran.r-project.org/web/packages/kernelshap, visited 2024/01
2https://shap.readthedocs.io/en/latest/index.html, visited 2024/01

https://cran.r-project.org/web/packages/kernelshap
https://shap.readthedocs.io/en/latest/index.html


related to the age of the snail and is typically used as a proxy
both by farmers and customers to determine their price.

A non-i.i.d. scenario is induced when partitioning the
datasets among the various clients participating in the FL
process. Specifically, we force both a quantity skewness and a
label distribution skewness [24]: the former indicates that dif-
ferent clients may hold different amounts of local training data;
the latter indicates that the marginal distributions of the target
variable may vary across clients. For example, the California
training set was divided into ten contiguous geographical areas
aggregated starting from the 52 Californian administrative
boundaries, whereas the Abalone dataset was divided into
ten clients with incremental average number of rings. Figure
3 contains a visual representation of the distribution of the
training sets among clients. Finally, a MinMax normalization
is applied to all datasets to clip the features range in the unit
interval. This is feasible in the federated setting under the
reasonable assumption that the range of each feature, or an
estimate thereof, is known to the server.

(a) Magic (b) Rice

(c) California (d) Abalone

Fig. 3. Number of instances per client. Color indicates the marginal
distribution of the target. (a,b) Classification tasks – (c,d) Regression tasks.

C. Details on classification and regression models

We considered an MLP-NN as a representative of an
“opaque” model to be learned in an FL fashion. The MLP-
NN has two hidden layers, each with 128 neurons and ReLu
activation, followed by an output layer. For the binary classifi-
cation tasks, a sigmoid activation function is considered along
with the BinaryCrossentropy loss. For the regression tasks, the
output layer consists of a linear unit and the Mean Squared
Error (MSE) loss is considered. Adam is adopted as optimizer
[25]. In the FL setting, we exploit the classical FedAvg as
aggregation strategy [2], and we set the minibatch size to 64,

the number of local epochs to 5, and the overall number of
federation rounds to 20 for classification and 80 for regression
tasks. It is worth underlining that pursuing the best possible
performance metrics is not the main scope of this work:
we merely searched for a configuration that allows the FL
model to address the supervised learning task while achieving
satisfactory performance, without any thorough optimization
of the hyperparameters. To ensure that the explainability
analysis is valid and meaningful, we ascertain that FL models
achieve reasonable performance. We considered accuracy and
F1-score as metrics for classification tasks, R2 and RMSE as
metrics for regression tasks.

VI. EXPERIMENTAL RESULTS

Table III reports the performance metrics of the MLP-NN on
the test set. The models learned in an FL fashion are compared
with models learned via a traditional centralized setting (CL),
where the whole training set is assumed to be available on
a single server. Clearly, this only serves as a baseline and is
not applicable when privacy preservation is mandatory since
it requires data sharing.

TABLE III
PERFORMANCE METRICS ON THE TEST SET. FL AND CL INDICATES THE

FEDERATED AND THE CENTRALIZED LEARNING SETTING, RESPECTIVELY.

FL CL FL CL

Accuracy F1-score

Magic 0.87 0.89 0.90 0.92
Rice 0.90 0.90 0.88 0.88

RMSE R2

California 0.80 0.56 0.55 0.78
Abalone 2.09 2.01 0.60 0.63

For all datasets, the results of the FL model highlight that
the supervised learning tasks are successfully addressed, even
if it is generally outperformed by the CL counterpart. The
reasons for this gap can be manifold: first, the CL setting
considers the availability of the entire batch of training data;
second, no optimization of the FL configuration parameters
was performed, including the choice of an aggregation strategy
different from FedAvg which may suffer from poor conver-
gence on non-i.i.d. data [26]. In any case, this slight drop in
metrics does not undermine the significance of the explain-
ability analysis applied to the FL model, which will be the
focus of the following sections. Specifically, we first provide a
fine-grained analysis on one of the datasets (Abalone) and then
report a thorough discussion of the outcomes derived from the
proposed and alternative approaches considered in this work
for federated explanations with SHAP on all datasets.

A. Interpreting the results: the case of Abalone dataset

The Shapley values reveal, a-posteriori, the additive im-
portance score of each feature for each prediction performed
by the model. Figure 4 illustrates a very common way of
representing Shapley values, based on a randomly selected
example from the Abalone test set.



Fig. 4. SHAP force plot. Visual representation of Shapley values for instance
#3259 of Abalone test set.

The force plot in Fig. 4 shows the contribution of each fea-
ture to the prediction. The base value, computed as the average
of predicted values for the examples in the background dataset,
is ϕ0 = 10.11. Features represented in pink have a positive
contribution, whereas those in blue have a negative one. In
the example, the largest contributions to the predicted value
ŷ = 11.61 come from Shell weight and Whole weight (which
contribute positively: ϕShell weight = 2.77, ϕWhole weight =
2.22) and from Shucked weight (which contributes negatively:
ϕShucked weight = −3.95).

Let Φ be the Ntest×F matrix of Shapley values obtained for
all the instances in the test set. In the following, the subscript
is used to indicate the approach adopted for the estimation
of the Shapley values. A compact way of representing the Φ
matrix is shown in Fig. 5.

Fig. 5. Shapley values for the Abalone test set, estimated with the Centralized
Full approach.

The heatmap displays the ΦFull matrix, whereby Shapley
values have been estimated using the full training set (union of
local training sets) as background dataset. Figure 5 provides
an early glimpse of the feature importance on the test set.
However, further insight can be gained by comparing the
SHAP matrices obtained with different approaches.

Figure 6 shows a comparison of both the FedFCM approach
(Fig. 6a) and the Random approach (Fig. 6b) with the baseline
approach, represented by centralized Full. For the sake of
brevity, only one of the ten repetitions is presented.

For each approach, in addition to the Φ matrix (left), also
the element-wise absolute value of the difference between Φ
and ΦFull is reported (right). A visual analysis of the heatmaps
suggests that the FedFCM approach shows a very similar
pattern compared to the centralized Full approach. This is also
reflected in the relatively low values of the difference matrix:
using a limited number of instances obtained via Federated

(a) Shapley values obtained with FedFCM (left) and compar-
ison with Full (right).

(b) Shapley values obtained with Random (left) and compari-
son with Full (right).

Fig. 6. Shapley values for the Abalone test set.

FCM as background dataset provides a good approximation
of what would be obtained if the entire training set were
available. This outcome is somehow expected: the Federated
FCM coincides with the traditional FCM applied on the entire
dataset (as discussed in Section IV) and the application of
summarization techniques to reduce the numerosity of the
background dataset is a widely established practice [7], [11].
Conversely, the randomly generated synthetic background
leads to a matrix of Shapley values ΦRandom that diverges
substantially from the centralized baseline ΦFull , meaning
that such explanations can be qualified as inaccurate. As
anticipated in Section IV-B, the rationale lies in the fact that
the background dataset is not representative of the actual
distribution of the data.

A quantitative assessment of the difference between Φ
matrices can be obtained by resorting to a matrix norm.
Without loss of generality, here we consider the Frobenius
norm, which is defined as follows for a generic matrix A with
s rows and t columns:

∥A∥F =

√√√√ s∑
i

t∑
j

|aij |2 (8)

With reference to the matrix reported in Fig. 6, we obtain
∥ΦFedFCM − ΦFull∥F = 19.5 and ∥ΦRandom − ΦFull∥F =
176.1. The distance assessment confirms the superiority of the
approach based on Federated FCM, as it is obviously desirable
to minimize the Frobenius norm in the comparison with the
centralized case, used as a baseline. However, the numerical
evaluation does not enable a straightforward understanding of
whether – and to what extent – the explanations are actually
consistent or not. In other words, we are unable to judge a



priori how the discrepancy ∥ΦFedFCM − ΦFull∥F = 19.5 is
reflected in the actionable explanations provided by the system
to any stakeholder.

To shed light on the perceived difference in the explanations,
we refer to the specific instance of the test set for which the
distance between the Shapley values obtained with FedFCM
and with Full is maximum (ID #3140). Figure 7 reports the
Shapley values of the three approaches (Full, FedFCM and
Random) for such an instance.

Fig. 7. Shapley values obtained with Full, FedFCM and Random approaches
on the instance #3140 of Abalone dataset, for which the distance between the
Shapley values obtained with FedFCM and with Full is maximum.

In the example where the FedFCM approach deviates more
from the Full centralized one, their explanations are however
substantially consistent. Both identify Shell weight as the
most influential feature and, in general, the sign and rank
of feature contributions are always preserved. This is not the
case for explanations obtained with the Random approach: the
Shucked weight feature has the major positive contribution
and several features (Height, Whole weight and Shell weight)
have opposite values of importance compared to the other
approaches. We recall that the model is the same for all three
approaches and therefore the predicted value is also the same.

The analysis therefore confirms that the choice of the
background dataset is a critical aspect of the KernelSHAP
method and highlights that the approach based on federated
clustering allows for accurate explanations in the FL setting.

B. Numerical results on Classification and Regression
Datasets

In this section, the numerical results concerning the four
datasets described in Section V-B are reported.

First, we measure the discrepancy of both the FedFCM and
the Random approach with the baseline centralized approaches
(Full, FCM-100 and FCM-50) in terms of Frobenius norm of
the pairwise difference of Φ matrices. For each comparison,
ten values of the norm are obtained from as many trials with
different random seeds. Figure 8 shows the results in the form
of boxplots. It is worth noticing that the evaluation of Full
centralized KernelSHAP on the two largest datasets (Magic
and California) was not possible: using the entire training set
as a background to obtain explanations on the entire test set
proves to be prohibitively time consuming even on relatively
sophisticated computational units (Apple M1 Pro, 16-GB).

(a) Magic (b) Rice

(c) California (d) Abalone

Fig. 8. Boxplots of the discrepancy of both the FedFCM and the Random
approach with the baseline centralized approaches in terms of Frobenius norm
of the pairwise difference of Φ matrices.

Results confirm the general validity of the preliminary
outcome observed for the Abalone dataset in Section VI-A.
Explanations obtained with federated clustering procedure are
much closer to the ideal centralized case compared to those
obtained with a random background dataset. The absolute
norm values are higher in regression tasks than in classification
tasks, as only in the latter case the predictions (and indeed
also the explanations) are bounded in the unit interval [0,1].
Also, the value is not normalized for the size of the test set,
which varies among datasets. Interestingly, different random
initialization of centers does not entail significant variability
of the Frobenius norm for the FedFCM approach.

Table IV reports the Frobenius norm of the difference
between Φ matrices obtained with the centralized approaches
for each dataset.

TABLE IV
FROBENIUS NORM OF THE DIFFERENCE BETWEEN CENTRALIZED

APPROACHES FOR EACH DATASET.

MA RI CA AB

∥ΦFull −ΦFCM−100 ∥F NA 0.2 NA 14.4
∥ΦFull −ΦFCM−50 ∥F NA 0.2 NA 19.5
∥ΦFCM−100 −ΦFCM−50 ∥F 0.3 0.1 5.2 5.4

It can be noticed that the values of the norm are quite limited
and comparable to the discrepancy observed for FedFCM
approach in Fig. 8. The maximum value observed for the



Abalone dataset (19.5 for FedFCM vs Full) is coherent with
the one reported in Section VI-A, which was shown to have
no relevant influence on the explanations even for the most
impactful record in the test set. It is worth underlining that
increasing the size of the background entails an increased com-
putational cost. Table V shows the runtime for the centralized
approaches, where their execution was feasible.

TABLE V
RUNTIME IN SECONDS OF THE CENTRALIZED APPROACHES FOR EACH

DATASET.

MA RI CA AB

ΦFull NA 2276 NA 2735
ΦFCM−100 2957 94 1097 97
ΦFCM−50 1666 53 735 58

Although an accurate estimate would require repeated test-
ing, the values of runtime obtained for single trials are
indicative of the dependence on the size of the background
and of the test set.

C. Consistency analysis of local explanations

The property of consistency in FL setting, as introduced in
[16], is achieved when distinct participants receive identical
explanations for an output generated by the FL model given
identical input instances. The numerical results demonstrate
that the estimation of the Shapely values obtained with the
FedFCM approach are a faithful approximation of those
obtained with the Centralized approaches. Furthermore, the
centers derived with such a privacy preserving procedure con-
stitutes a collaboratively built background dataset that can be
shared to any party, thus ensuring consistency of explanations.

As summarized in Table I, Local approaches are data-driven
and privacy preserving, but unlike the FedFCM approach they
do not ensure consistency of explanation. The misalignment
of client-side explanations obtained with KernelSHAP is due
to the fact that the background datasets (derived from local
training sets) vary from client to client and therefore is
expected to be particularly evident in non-i.i.d. settings.

In this section, we first provide a fine-grained consistency
analysis of the explanations for the Abalone dataset and then
we discuss the outcomes for the four datasets. For the purpose
of this analysis, we assume that the same set of instances (that
is, the test set) is available to each client.

Figure 9 reports the Shapley values for the test instance
#3259 (the same of Fig. 4, taken as an example) estimated with
the FedFCM approach (black bar) and the Local approach.

The barplot highlights that the local explanations exhibit
large variability among the clients, which is ascribed to the
fact that the local training sets are not identically distributed
as shown in Figure 3d. As a consequence, the same individual
prediction from the same model is explained by different
relative feature importance. This is particularly evident when
comparing explanations for Client 0 and Client 9, whereby the
average value of the target variable Rings in the training set is

Fig. 9. Shapley values for instance #3259 of Abalone dataset for each client.

lowest and highest, respectively, and resulting Shapley values
have always opposite signs.

Finally, we report the discrepancy of each Local approach
with the baseline centralized approaches (Full, FCM-100 and
FCM-50) in terms of Frobenius norm of the pairwise differ-
ence of the matrices containing the Shapley values (Fig. 10).
For the sake of completeness, we also report on the same plot
the boxplots for the FedFCM approach.

(a) Magic (b) Rice

(c) California (d) Abalone

Fig. 10. Boxplot of the discrepancy of both the FedFCM and the Local
approach with the baseline centralized approaches in terms of Frobenius norm
of the pairwise difference of Φ matrices.

As expected, the variability of the Local differences from the
centralized approaches is very pronounced and significantly
higher than the ones obtained with FedFCM. The lower
whiskers of the Local boxplots are found at low Frobenius
norm values, comparable with those of the FedFCM case
(except for the California dataset). However, the matrices of



explanations generated with the Local strategy are in general
more distant from the Centralized ones.

VII. CONCLUSION

In this paper we have proposed an approach for simul-
taneously addressing two requirements towards trustworthy
AI: data privacy preservation during the learning stage and
explainability of the resulting model. The Federated Learning
(FL) paradigm enables collaborative model learning in a pri-
vacy preserving manner. However, most existing FL solutions
revolve around Deep Learning and Neural Network (NN)
models which are generally considered opaque, i.e. hard to
interpret. Several approaches have been proposed for the post-
hoc explainability of such models but their adaptation to the
FL setting is not straightforward. We focused on the one
of the most popular post-hoc methods, namely the SHapley
Additive exPlanation (SHAP) method, and designed a novel
approach for obtaining accurate and consistent explanations in
the federated setting. In our view, an explanation is accurate
if it coincides with the one that would have been obtained if
the scattered training data could have been put together, thus
relaxing the privacy requirement. An explanation is consistent
if, given the same input instance, FL model and predicted
output, any client obtains the same explanation.

The crux of the problem consists in properly designing a
common background dataset, which is required by SHAP for
calculating the individual explanations. Our proposal consists
in executing a federated clustering procedure over scattered
participants local data as a data summarization technique:
the resulting cluster representatives constitute the common
background dataset for the execution of the SHAP method.
We resorted to the KernelSHAP variant of SHAP to explain
the individual predictions of a Multi Layer Perceptron Neural
Network (MLP-NN) learned in an FL fashion. As a federated
clustering procedure we adopted a recently proposed federated
version of the popular Fuzzy C-means (FCM) algorithm.

We applied the proposed methodology to four open-access
datasets suitably partitioned to simulate an FL setting, covering
both classification and regression tasks. The analysis of the
results shows how the explanations provided by the proposed
Federated SHAP method are fairly accurate, compared to
the centralized case. We also compared our approach based
on federated clustering with two alternative approaches: the
Random approach which generates the background dataset by
randomly sampling from a uniform distribution over the input
space, and the Local approach where each client generates
its own background dataset by applying the FCM clustering
algorithm to its local training set. The experimental results
show that the former approach lacks accuracy while the
latter lacks both accuracy and consistency. Future work will
broaden the analysis over different dimensions: generalizing
the proposed approach for handling also categorical variables,
and investigating the adoption of other post-hoc explainability
methods in the FL setting, possibly involving different data
types (e.g., images and texts) and different tasks (e.g., time
series prediction).
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