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Abstract—Trustworthy Artificial Intelligence (AI) has gained
significant relevance worldwide. Federated Learning (FL) and
eXplainable Artificial Intelligence (XAI) are two among the
most relevant paradigms for accomplishing the requirements
of trustworthy AI-based applications. On the one hand, FL
guarantees data privacy throughout a collaborative learning
of an AI model from decentralized data. On the other hand,
XAI models ensure transparency, accountability, and trust in
AI-based systems by providing understandable explanations for
their predictions and decisions. To the best of our knowledge,
only few works have explored the combination of FL with
inherently explainable models, especially for classification task.
In this work, we investigate FL of explainable classifiers, namely
Fuzzy Rule-based Classifiers. In the proposed FL scheme, each
participant creates its own set of classification rules from its
own local training data, resorting to a simple procedure that
generates a rule for each training instance. Local rules are sent
to a central server which is in charge of aggregating them by
removing duplicates and solving conflicts. The aggregated set of
rules is then forwarded to the single participants for inference
purposes. In our experimental analysis we consider two real-
world case studies focusing on heterogeneous settings, namely
non-IID (Independent and Identically Distributed) scenarios. Our
FL scheme offers significant advantages in terms of classification
performance to the participants in the federation, preserving data
privacy.

Index Terms—Federated Learning, Explainable Artificial In-
telligence, Fuzzy Rule-based Classifier

I. INTRODUCTION

In recent years, Artificial Intelligence (AI) solutions have
become increasingly pervasive, extending also to sensitive do-
mains such as healthcare and autonomous driving. Due to the
potential impact on human lives that these solutions may have,
it is essential to ensure their trustworthiness. The European
Commission, for instance, formalized the “Ethic Guidelines
for Trustworthy AI” [1] and the ”AI Act” [2] to establish
guidelines for enabling trustworthy AI. Transparency of AI
systems and data privacy stand out as pivotal prerequisites for
trustworthiness.

Transparency is defined as the capability to explain AI-
based systems to a designated audience: it allows users to
understand the rationale behind the results of AI tools and is
becoming increasingly relevant for legal accountability [3].

The field of Explainable AI (XAI) focuses on describing
the underlying architecture of AI systems and the logic be-
hind their decision-making processes [4]. XAI approaches are
categorized into two main groups: post-hoc techniques and
algorithms for generating inherently explainable models. Post-
hoc techniques aim to enhance the explainability of opaque
models like Neural Networks (NNs). Inherently explainable

models are designed to be interpretable once trained, providing
insights on the reason behind their decisions.

In application domains that involve sensitive data, such as
healthcare and finance, moving information from local data
owners to a centralized entity to train an AI model could
not be feasible due to privacy constraints. To ensure data
privacy in learning AI models from decentralized data, Google
introduced in 2016 the Federated Learning (FL) paradigm [5].
FL is designed to collaboratively train a global AI model
across multiple distributed nodes without exposing their local
raw data. In FL each node trains/updates a model exploiting its
private data and then shares the updated model typically with
a server which aggregates the received models into a global
one, generally in a round-based iterative fashion.

Recently, the concept of Fed-XAI, which combines FL
with XAI paradigms, has emerged. The synergy between
these paradigms is crucial to achieve trustworthiness in AI
systems as it enables the simultaneous pursuit of transparency
and privacy preservation requirements. In [6] and [7] authors
summarize the few contributions in which XAI models have
been trained in a federated fashion, along with some real-
world applications of Fed-XAI. Most efforts in this domain
revolve around FL of interpretable by-design models, such
as Fuzzy Rule-based Systems (FRBS), and are specifically
tailored for regression tasks [8]–[10]. To the best of our
knowledge, only one work reports an approach for FL of rule-
based systems for classification tasks [11]: authors devised
a strategy for FL of Fuzzy Rule-Based Classifiers (FRBCs)
mainly focusing on imbalanced datasets. The study of post-
hoc techniques in Fed-XAI is also in its infancy: SHAP [12]
is one of the most popular post-hoc methods used for deriving
feature importance scores, but its adaptation to the federated
setting is not straightforward [13], [14]. Most of the works
mentioned above only discuss the independent and identically
distributed (IID) scenario which, however, is rather uncommon
in the federated setting: in many real-world applications, in
fact, it is likely that the local data of the different clients follow
different distributions resulting in a non-IID scenario [15].

In this paper, we investigate an approach for FL of FRBCs
as explainable by-design classifiers, with a special focus
on their performance on data heterogeneous (that is, non-
IID) scenarios. First, we extended a recently released open
source Fed-XAI framework [16], currently restricted to FL of
Takagi-Sugeno-Kang (TSK) FRBS for regression tasks, with
the ability to address classification tasks. To this aim, we
purposely designed an FL scheme which exploits insights of
the well-know Chi algorithm [17] for generating classification



rules from a labelled training set. Then, we carried out an
experimental analysis involving two real-world case studies
under different data distribution settings. We compared the
results achieved with the FRBC generated in a federated
fashion with those obtained by learning an FRBC on each
node by applying the classical Chi algorithm on local data.
Moreover, we compared the proposed FL scheme with the cen-
tralized baseline. For this purpose, the classical Chi algorithm
is applied on the union of local data, under the assumption (ac-
tually unfeasible in the FL setting due to privacy constraints)
that local raw data can be moved from nodes where are
stored for centralized processing. Finally, results obtained with
centralized Chi algorithm are also compared with two state-
of-the-art opaque models, namely a Multi-Layer-Perceptron
(MLP) and a Random Forest (RF).

The rest of the paper is organized as follows: Section II
provides a brief background on Fed-XAI and FRBCs. In
Section III we describe the proposed FL scheme for FRBCs.
Section IV describes the case studies used in our experimental
analysis, and Section V presents and discusses the results of
this analysis. Finally, Section VI concludes with appropriate
remarks.

II. BACKGROUND

In this section we first illustrate the main concepts of FL
and Fed-XAI paradigms. Then we provide some background
on traditional FRBC and on the Chi algorithm.

Federated Learning and Fed-XAI

FL is a recent paradigm enabling collaborative training
of ML and AI models among multiple participants while
preserving data privacy, as only model updates or aggregated
statistics are shared [18], [19]. Data partitioning in FL is
categorized into horizontal and vertical settings, depending on
whether instances or features are partitioned among clients,
respectively. Additionally, FL varies in scale: cross-silo FL
involves few participants like organizations which are charac-
terised by abundant data and computing resources, while cross-
device FL involves many participants like smartphones with
limited data and resources. Most FL methods use the federated
averaging (FedAvg) protocol [15], an iterative process where
participants update a global model using Stochastic Gradient
Descent or its variants. This approach suits Deep Learning
and NN models but is not immediately applicable to models
like Decision Trees (DTs) and Rule-base Systems (RBSs),
which are typically not learned through the optimization of
a differentiable global objective function.

The concept of Fed-XAI aims to enhance users’ trust in
AI systems by simultaneously addressing the requirements of
privacy preservation (through FL) and explainability (using
XAI models and techniques). Research in this area is growing,
focusing on both post-hoc methods [20]–[23] and explainable
by-design models [8]–[10], [24]. The adoption of post-hoc
explanation in FL context is anything but trivial. Several recent
works have focused on SHAP, as one of the most popular
post-hoc methods [13], [14]: the main issue is that SHAP

requires access to training instances (often referred to as the
reference dataset) even at explanation time, i.e. when it comes
to explaining the output of a model given an input instance.
Evidently, in the FL scenario the whole training set is not
available at a generic node, which can at most only rely on
its local training data. This means that, given the same input
instance, FL model and predicted output, different nodes may
obtain different explanations. Although tackling these issues
presents an interesting research challenge, it is at the same
time worth investigating FL of inherently explainable models,
which do not require the adoption of post-hoc techniques.

As regards explainable by-design models, one of the main
challenges in Fed-XAI is the aggregation of the local models:
the FL of models such as DTs and RBSs cannot rely on
the traditional FedAvg protocol but rather requires ad-hoc
aggregation strategies.

The works discussed in [8] and [10] propose FL schemes for
learning TSK-FRBS for regression problems. Both approaches
encompass two main stages: i) learning the fuzzy partitions
of each input feature and the antecedents of the rules, and
ii) learning the consequents for each rule. For the first stage,
[8] uses a federated version of the Fuzzy C-Means algorithm
to identify global clusters, while [10] employs a local clus-
tering process followed by an aggregation stage on a central
server, where similar clusters are merged. After identifying
clusters, both studies exploit a typical method for determining
antecedent parameters, particularly the membership functions,
which involves a Gaussian fitting of the convex envelope of
the projected membership values for each cluster. For the
second stage, both [10] and [8] apply a federated version of
gradient-based learning methods. Another federated algorithm
for generating TSK-FRBS for regression problems has been
discussed in [9]. In this approach, each client generates a
TSK-FRBS from local data and shares it with the server.
The server then aggregates the TSK-FRBSs by combining
the rules received from the clients and resolving any possible
conflict. A conflict occurs when rules from different TSK-
FRBSs cover the same specific area of the attribute space (i.e.,
they have identical antecedents) but have different consequent
parameters. Conflict resolution involves creating a single rule
from each set of conflicting rules. This rule maintains the
common antecedent and has as consequent the average of
consequent coefficients of the conflicting rules. This approach
ensures a higher explainability than the ones in [10] and [8],
because it exploits pre-defined strong fuzzy partitions and
adopts the maximum matching strategy in the inference.

The work discussed in [11] introduces a federated approach
for incrementally learning the rules of an FRBC. A dedicated
weighting scheme is proposed for addressing data imbalance.
The approach encompasses two rounds of federation: the first
is used for generating the rules and the second computes the
rule weights.

Fuzzy Rule Based Classifier

An FBRC basically includes a rule base (RB), a database
(DB) containing the definition of the fuzzy sets used in the RB,



and an inference engine. RB and DB comprise the knowledge
base of the rule-based system.

Let X = {X1, . . . , XF } be the set of input attributes
and Y be the output variable. Let Uf , with f = 1, ..., F ,
be the universe of the f th input attribute Xf . Let Pf =
{Af,1, . . . , Af,j , . . . , Af,Tf

} be a partition of attribute Xf

consisting of Tf fuzzy sets. The output variable Y is a
categorical variable with values in the set Γ = {C1, . . . , CK}
of K possible classes. Let {(x1, y1), . . . , (xN , yN )} be a
training set composed of N input–output pairs, with xt =
[xt,1 . . . , xt,F ] ∈ RF , t = 1, . . . , N and yt ∈ Γ. Fuzzy sets
may be characterized by different membership functions. A
popular choice consists in using triangular fuzzy sets: each
fuzzy set Af,j is identified by the tuples (af,j , bf,j , cf,j),
where af,j and cf,j correspond to the left and right extremes
of the support, and bf,j to the core. In our experiments, we use
strong uniform fuzzy partitions with triangular fuzzy sets [25].
The generic m-th rule Rm of an RB is expressed as follows:

Rm : IF X1 is A1,jm,1 AND . . .AND XF is AF,jm,F

THEN Y is Cjmwith RWm (1)

where Cjm is the class label associated with the rule, and
RWm is the rule weight, i.e., a certainty degree of the
classification in the class Cjm for an instance belonging to
the subspace delimited by the antecedent part of Rm. RWm

generally is computed as the certainty factor (CFm) [26]. For
a generic rule, CFm is defined as

CFm =

∑
xt∈Cjm

wm(xt)∑N
t=1 wm(xt)

=
Numm

Denm
(2)

The term wm(xt) represents the matching degree, or strength
of activation, for the rule Rm and an input instance xt ∈ RF .
Formally:

wm(xt) =

F∏
f=1

Af,jm,f
(xt,f ) (3)

For the sake of simplicity, in the formula, we have considered
the product as t-norm for the logical conjunction. The match-
ing degree captures the compatibility degree between the rule
antecedent and the feature values of the input instance. In the
computation of the certainty factor, the numerator in Eq. 2
represents the sum of matching degrees for training instances
of class Cjm within the fuzzy region defined by the antecedent.
The denominator is the sum of matching degrees for all the
training instances within this fuzzy subspace, regardless of
their associated class.

An RB with M rules can be used for inference purpose,
i.e., for determining the class of any given input instance x̂.
First, the association degree hm(x̂) of each rule is computed
as:

hm(x̂) = wm(x̂) ·RWm (4)

Then, a reasoning method is applied to determine the pre-
dicted class. Maximum matching represents a commonly used

reasoning method: an input instance is classified into the
class corresponding to the rule with the maximum association
degree. In case of tie, the class of the most specific rule or
of the rule with the highest RW is typically assigned to the
instance.

A popular algorithm for the generation of rules in an FRBC
is the Chi algorithm [17]. As discussed in [27], due to its
simplicity, this algorithm has also been successfully adopted
in different distributed versions for big data classification. The
field of distributed ML has similarities with horizontal FL,
but also a substantial difference: in FL multiple parties have
their own data and are reluctant to share them due to privacy
constraints, whereas in distributed ML privacy is not a concern
and multiple nodes are employed to enhance processing power
and memory for handling big datasets.

In practice, the Chi algorithm relies on a pre-defined DB
describing the fuzzy partitions of each attribute and generates
a rule for each training instance. The antecedent of a rule is
generated considering, for each attribute, the fuzzy set that
has been activated by the training instance with the highest
membership degree; the consequent is directly specified by
the label associated with the training instance itself. Duplicate
rules (i.e., those having the same antecedents and the same
consequents) are removed and appropriate strategies have been
defined for handling conflicting rules (i.e., those having the
same antecedents and different consequents), and for assigning
a weight to each rule.

III. FEDERATED FUZZY RULE BASED CLASSIFIER

The proposed FL algorithm is designed for generating
the set of rules of an FRBC in a collaborative and privacy
preserving way and is schematized in Fig. 1. Specifically, first,
each participant in the federation independently carries out the
local training of the model, namely generates a set of rules
with its own data. Then, the set of rules is sent to a central
server which is in charge of aggregating them. Finally, the
aggregated RB is sent back to all the participants, which can
use it for inference purposes.

Fig. 1. Overview of the FL algorithm for FRBC generation.

The proposed approach for FL of FRBC stems from the
Chi algorithm and exploits a one-shot procedure (i.e., a single
round of federation), analogously to what has been proposed



for federated TSK-FRBS [9]. In the following, we describe in
detail the steps of our proposed approach:

• The central server configures the learning process by
sending a set of hyperparameters to each data owner. Such
set includes: the domain of definition of the attributes
for data normalization and the number of fuzzy sets Tf

(f = 1, . . . , F ) for fuzzy partitioning of input attributes.
• Once it has received the hyperparameters, each local

node LN i starts the rule generation stage. It generates
a classification rule Ri

m for each training instance, as in
the classical Chi algorithm. At this stage duplicate rules
are discarded whereas conflicting rules are maintained.
Moreover, rather than computing the rule weights, for
each rule Ri

m the local node computes and stores the
values of the numerator Numi

m and the denominator
Deni

m of the certainty factor (see Eq. 2)
• Each node LN i sends the local set of rules along with

their associated values of Numi
m and Deni

m to the central
server.

• The central server creates a temporary RB composed by
the juxtaposition of the rules collected from the different
local nodes. Notably, the temporary RB may contain
duplicate rules (originating from different nodes) and
conflicting rules.

• The server creates a final global RB. If a rule has not
duplicates or conflicts, it is retained in the RB and its
weight is computed as in equation 2. Each set DRm of
duplicate rules is combined into a single global rule Rm

whose weight RWm is determined as follows:

RWm =

∑
Ri

m∈DRm
Numi

m∑
Ri

m∈DRm
Deni

m

. (5)

For each set of conflicting rules only the one with the
highest weight is retained in the final global RB.

The resulting FRBC represents the federated model, which
is eventually sent back to the clients for local inference.

Notably, the antecedent part of the RB obtained in the
federated setting is equal to that obtained in the centralized
case. However, the weights of the rules are not necessarily
the same: in the federated case, a participant will contribute
to the global computation of the certainty factor (i.e., RW )
only for the rules generated by exploiting its local training
set. Conversely, in the centralized case, each training instance
contributes to the computation of the certainty factor for all
the rules for which it has a non-zero strength of activation.
Obviously, a discrepancy in the rule weights between federated
and centralized settings may lead to a different outcome of the
conflict resolution process and therefore to a difference in the
consequent part of the resulting FRBC models.

As discussed in Section I, the FL scheme discussed in this
section has been integrated in a publicly available open source
framework which supports the implementation in Python of FL
schemes for FRBSs1.

1Source code will be available upon acceptance of this paper

IV. EXPERIMENTAL CASE STUDIES

In this section, we describe the two case studies considered
in our experimental analysis. The first one regards the recog-
nition of high energy gamma particles in the atmosphere and
is based on the publicly available MAGIC Gamma Telescope
[28] dataset. The second one pertains to a vehicle network-
ing environment and was designed within the framework of
HEXA-X2, the EU flagship project for Beyond 5G (B5G)
and 6G networks. This scenario regards the prediction of
the Quality of Experience (QoE) for video streaming across
multiple vehicles.

In the following, details of the two case studies are illus-
trated.

A. Gamma Signal Detection

The case study considers a ground-based atmospheric
Cherenkov gamma telescope that registers the observed high-
energy gamma particles employing an imaging technique.
This type of telescope detects high-energy gamma rays by
capitalizing on the radiation emitted by charged particles gen-
erated within the electromagnetic showers. These showers are
initiated by gamma particles and develop in the atmosphere.
The telescope collects photons, forming distinct patterns.

In this case study, the primary objective is to differentiate
between instances originating from primary gamma rays and
those from hadronic showers initiated by cosmic rays in the
upper atmosphere. The dataset consists of 19,020 instances,
split into 12,332 instances belonging to class gamma (g) and
6,688 instances belonging to class hadron (h). In our exper-
iments, we simulated a scenario in which 10 observatories,
each equipped with a telescope, are involved in a federated
study. To this aim, we consider three different distributions
of the data of the MAGIC Gamma Telescope dataset across
the 10 observatories. Specifically, we defined the following
scenarios:

• IID: all the observatories have approximately the same
class distribution and the same volume (i.e., number of
instances). As a consequence, each observatory data is a
representative instance of the overall dataset.

• Q-NIID (non-IID scenario with quantity skew [29]): the
class distribution remains consistent, whereas the volume
of local dataset varies across observatories.

• QL-NIID (non-IID scenario with quantity and label
skew): in this case, both the volume and the distribution
of classes vary across observatories. As a consequence,
local data distributions are generally different from each
other and from the overall data distribution.

Figure 2 shows the details of the different training data
distributions for the Gamma Signal Detection scenario. These
distributions can simulate three different real-world situations
that may occur in a scientific setting where different research
centers are not allowed to share their raw data.

2https://hexa-x.eu/, visited on January 2024

https://hexa-x.eu/


(a) IID (b) Q-NIID (c) QL-NIID

Fig. 2. Gamma Signal Detection case study: barplot of the different data distribution scenarios.

B. QoE Prediction in B5G/6G Networks

The second case study, shown in Fig. 3, has been introduced
and described in [30] and deeply analyzed in [31]. It involves
an automotive environment where connected vehicles serve as
User Equipments (UEs) within the mobile network. Each UE
is connected to its respective base station (BS) and receives
a live video feed from the camera of the vehicle ahead. This
setup potentially supports advanced driving assistance systems,
like safety distance evaluation. A crucial requirement for
providing these services is the continuous display of the video
in high quality. Thus, an AI-based service which continuously
monitors the state of the network and provides an alert in case
of decrease of the video quality is envisioned to be deployed
in next generation networks [32].

Fig. 3. Schematized representation of the QoE prediction case study.

In our experimental analysis, we adopt the publicly available
QoE prediction dataset [30]. It encompasses 15 UEs within a
geographical space served by seven BSs to which the vehicles
are connected. For each UE different metrics (regarding con-
textual information, Quality of Service and QoE) are gathered
from 24 simulations, each lasting approximately 120 seconds.
Further details are available in [30]. The training set comprises
the data from the initial 20 simulations, while the last 4 sim-
ulations are designated for the test set. Notably, each UE has
its own dedicated test set. We created a binary classification
dataset by following the details provided in [30]. Indeed, we
define the QoE prediction problem as a classification task.
The target is to estimate the future level (Good or Poor) of

the video quality at a specific time horizon of 3 seconds in
the future. The target value is estimated considering as input
to our classification model a set of statistics calculated on
the historical values of the metrics within a time window
of 10 seconds. Specifically, following the preprocessing steps
proposed in [30], we considered three network metrics, namely
the Signal to Interference plus Noise Ratio (SINR) value
measured at packet reception, the number of resource blocks
occupied and the distance from the serving cell. For each
metric, we extracted 10 statistics (mean, median, max, min,
variance, standard deviation, kurtosis, skewness, Q1 and Q3).
Thus, in total we consider 30 input features. The value of
the target was defined as Good if the value of the metric
framesDisplayed (the fraction of frames arrived at the time the
video was displayed) is greater than 0.8, and Poor otherwise.

In Figure 4 we show the two training data distribution
scenarios adopted for the second case study.

Specifically, we consider:
• IID: we maintain the original data distribution, with the

instances of 20 video sessions for each UE. It is worth
noticing that due to the nature of the dataset the actual
class distribution may slightly vary across participants.

• QL-NIID: it is obtained by randomly shifting video
sessions among the different UEs, forcing half of them
to include a few sessions.

Unlike the previous case study, the Q-IID scenario is not
discussed: in fact, due to the nature of the simulated video ses-
sions, altering the data volume across participants inevitably
results also in a label skewness.

It is worth to recall that each UE has its own test set, which
is always the same in both cases, and is composed by the
instances of 4 video sessions.

C. Experimental Setup

For each dataset and each data distribution scenario, we
evaluate the results achieved with FRBCs designed considering
three different learning schemes: FL, Local Learning (LL)
and Centralized Learning (CL). In FL, local nodes collaborate
in obtaining a single federated model without compromising
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Fig. 4. QoE prediction case study: barplot of the different data distributions scenarios.

the data privacy, as described in Section III. In LL each
node individually learns a model from its local data only.
In this setting, raw data privacy is preserved but there is
no collaboration among nodes. Hence, the assessment of the
performance of an FL approach entails measuring the gain
with respect to the LL setting. Finally, in CL data from all
nodes are first gathered and stored on the central server and
then are used to learn the model. This setting represents the
utmost form of collaborative training, but implies the violation
of data privacy, as raw data need to be transferred to the
server. The CL scheme is considered as a baseline for assessing
whether the FL scheme achieves acceptable results in terms
of classification performance.

Notably, the same testing data are considered for each
learning scheme and for each data distribution scenario. In
this way, we ensure a fair evaluation of the results in the
comparative experimental analysis. As for the QoE case study,
in the original dataset each UE has its own test set. As for the
Gamma Signal Detection case study, we carried out a 5-fold
cross-validation (CV) analysis. For each iteration of the CV
the test set of each local node follows the same distribution
as the original data (IID), whereas the training data varies
according to the distribution scenario considered.

To further enforce the comparative analysis, we consider
two additional baseline opaque models in our CL experiments,
namely an MLP and an RF. Although it may be valuable to
assess the performance of such models also in the federated
setting, we recall that our focus is on both model performances
and explainability. For the latter purpose, however, such
models would require the design of post-hoc explainability
techniques compliant with the federated setting (as discussed
in Section II) which are outside the scope of this work.

The training of the FRBC model is influenced by a single
hyperparameter, namely the number of fuzzy sets Tf used to
partition each input attribute. We carried out our experimental
analysis considering the same value of Tf for each input
attribute and setting Tf equal to 3, 5 and 7. Here, for the sake
of brevity, we show only the results achieved considering Tf

equal to 5 and 3 for the Gamma Signal Detection and QoE

Prediction case studies, respectively. Indeed, these settings
provide the best results in terms of trade-off between the
classification performance and the complexity of the FRBCs.

V. EXPERIMENTAL RESULTS

In this section, we report the results achieved on the two
considered case studies.

A. Gamma Signal Detection Results

As discussed in Section IV-A, data are distributed across
10 local nodes, i.e., 10 observatories, following 3 different
distribution scenarios.

Table I shows an aggregated view of the classification per-
formance, in terms of F1-score per class, achieved considering
the three learning schemes for FRBC and the CL scheme for
MLP and RF. The table reports the average F1-scores over the
10 local nodes along with their standard deviation. For each
node results were averaged over the five iterations of the CV.

The FL approach improves the performance of its LL
counterpart. Although in the IID scenario the two learning
schemes allow achieving comparable performances, the feder-
ated FRBC significantly outperforms the local ones in the non-
IID settings, especially under both quantity and label skewness
(QL-NIID). The federated models are not particularly affected
by the non-IID settings, whereas those learned locally lose
some generalization capability, as highlighted by the decrease
in F1-scores. The only exception for the FL setting is rep-
resented by the average F1-scores on class h, which in the
QL-NIID case is a couple of percentage points lower than in
the IID case. Furthermore, the FL scheme obtains performance
levels that are nearly on par with those achieved using the CL
scheme. The possible misalignment of rule weights between
the FL scheme and the CL scheme, discussed in Section III,
has a rather limited impact on performance in this case study.

Opaque models (RF and MLP) outperform the FRBC,
especially on the minority class h. Nevertheless, the rule-
based model achieves classification performance that can still
be considered acceptable and represents a different trade-
off, compared to opaque models, between accuracy and in-
terpretability: on one hand, in fact, the reason behind the



TABLE I
GAMMA SIGNAL DETECTION SCENARIO: F1-SCORES ACHIEVED IN THE DIFFERENT EXPERIMENTS. AVERAGE VALUES ± STANDARD DEVIATION.

FRBC IID FRBC Q-NIID FRBC QL-NIID FRBC MLP RF
class LL FL LL FL LL FL CL CL CL

g 0857 ± 0.009 0.867 ± 0.007 0.850 ± 0.009 0.866 ± 0.007 0.685 ± 0.284 0.859 ± 0.006 0.867 ± 0.007 0.909 ± 0.005 0.910 ± 0.001
h 0.676 ± 0.021 0.690 ± 0.018 0.662 ± 0.022 0.688 ± 0.017 0.553 ± 0.210 0.666 ± 0.016 0.690 ± 0.017 0.818 ± 0.008 0.817 ± 0.005

decision obtained from a rule is easily understood by a
human. On the other hand, the gain in classification accuracy
of opaque models comes at the cost of sacrificing inherent
interpretability.

The average values of F1-score shown in Table I, however,
provide only a rough indication of the performances, but do not
accurately reflect the actual situation experienced on each local
node. To provide a fine grained picture of the performance of
LL, FL and CL schemes, we report in Figure 5, the empirical
cumulative distribution functions (ECDFs) for the F1-score
on the g class (which represents the event of interest viz. the
gamma radiation).

Specifically, in the figure we report the ECDF for the
values of the difference, for each local node, of the F1-score
between the FL scheme and the LL scheme (∆FL−LL, dark
blue circles) and between the FL scheme and the CL scheme
(∆FL−CL, cyan diamonds) for the three considered distribu-
tions IID (Fig. 5a), Q-NIID (Fig. 5b) and QL-NIDD (Fig.
5c). Each curve has 10 points, coherently with the number of
observatories considered in our experiments. Whenever a point
lies in the positive half-plane (positive F1-score difference) it
indicates that the F1-score of the FL scheme is higher (and
therefore better) compared to the other one (either CL or LL).
We observe that the difference between FL and LL is stable
within the positive half-plane, regardless of the data distribu-
tion scenario. As expected, the most significant improvement
is obtained for the QL-NIID distribution. Additionally, the
points representing the difference between the FL and the CL
schemes are located around the black vertical line (indicating
a difference equal to zero), attesting the similarity in their
performance.

In Table II we show the average number of rules in the RBs
for the different data distribution scenarios considered in our
experiments.

TABLE II
GAMMA SIGNAL DETECTION CASE STUDY: NUMBER OF RULES FOR THE

DIFFERENT DATA DISTRIBUTION SCENARIOS AND THE DIFFERENT
LEARNING SCHEMES. AVERAGE VALUES OVER 5-FOLD CV ARE

REPORTED ALONG WITH THE STANDARD DEVIATION.

IID Q-NIID QL-NIID
LL 445.5 ± 5.8 425.5 ± 211.0 423.0 ± 133.4
FL 1789.0 ± 16.6 1788.8 ± 16.9 1788.4 ± 17.2
CL 1789.0 ± 16.6 1788.8 ± 16.9 1788.4 ± 17.2

The algorithm used for rule generation implies that the
number of rules is positively correlated, in general, with
the number of training instances. This motivates the high
standard deviation observed for the LL scheme in the non-IID
scenarios. As far as the FL scheme is concerned, the number of

rules is almost constant across the data distribution scenarios:
although the central server receives a different number of
rules from each local node the aggregation algorithm generates
approximately the same number of rules. Furthermore, as
expected, the values obtained in FL perfectly coincide with
those of the CL setting. As stated in Section III, this is due
to the fact that both schemes use, directly or indirectly, all the
training instances.

As regards the explainability of the FRBCs generated with
the three different learning schemes, we highlight that models
generated with the LL schemes are more compact, and thus
feature higher global explainability than the ones generated via
FL. As highlighted before, this also entails a poor classification
capability for the LL setting, especially when considering
non-IID scenarios. Models learned with FL and CL schemes
are more complex and indeed harder to interpret from a
global point of view. The global explainability of such models
could be enhanced by exploiting methods for reducing the
RB complexity, e.g., through an a-posteriors rule selection
algorithm [33].

It is worth noticing that model explainability does not only
concern its structural properties but also the inference process
(local explainability). In our FRBCs the predicted output is
determined by a single rule, which allows for straightforward
interpretation: the antecedent of the rule defines a specific
region within the search space, while its consequent describes
the estimated class. Unlike opaque models, local explainability
in FRBC is guaranteed “by construction” and does not require
the adoption of post-hoc techniques.

B. QoE Prediction Results

The QoE prediction case study involves 15 UEs. We recall
that each local node has its own test set which encompasses
four video streaming simulations and does not vary among the
various data distribution scenarios.

Table III shows the results, in terms of average F1-scores,
achieved in the different experiments.

Also in this case study the FL scheme outperforms the
LL counterparts. Moreover, the FRBCs generated by the FL
scheme achieve performance nearly equivalent to the ones
obtained by the CL approach. The QL-NIID scenario leads to
a drop in average F1-score for the models learned according to
LL scheme compared to the IID scenario, whereas the feder-
ated FRBC mantains its performance level. The generalization
capability of opaque models is greater compared to FRBCs,
but the discrepancy is less evident compared to the other case
study.
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Fig. 5. Gamma Signal Detection case study: ECDFs of the differences of F1-scores for the g class between FL and LL (∆FL−LL, dark blue) and between
FL and CL (∆FL−CL, light blue) for the three data distribution scenarios.

TABLE III
QOE PREDICTION IN B5G/6G NETWORKS: F1-SCORES ACHIEVED IN THE DIFFERENT EXPERIMENTS. AVERAGE VALUES ± STANDARD DEVIATION.

FRBC IID FRBC QL-NIID FRBC MLP RF
class LL FL LL FL CL CL CL
Good 0.670 ± 0.082 0.708 ± 0.074 0.587 ± 0.216 0.708 ± 0.076 0.708 ± 0.074 0.7256 ± 0.071 0.720 ± 0.069
Poor 0.721 ± 0.091 0.743 ± 0.069 0.677 ± 0.109 0.741± 0.070 0.741 ± 0.069 0.774 ± 0.071 0.781 ± 0.068

To provide additional understanding of the aggregated re-
sults shown in Table III, we report in Fig. 6 the ECDFs related
to the F1-score for the Poor class.

The ECDFs confirm that FL brings benefits compared to the
LL setting to most of the participants involved in the federation
compared to the LL scheme, in terms of classification perfor-
mance. In both data distribution scenarios the ECDFs between
FL and CL are close to the vertical black lines, meaning that
the difference in performance between FL and CL models over
local test sets is generally close to zero.

Table IV shows the number of rules for all the FRBCs
under the different scenarios. For the LL scheme, we show the
average number of rules calculated considering the different
RBs of each local node, along with the standard deviation.
The analysis of the values in the table confirms what was
observed in the previous case study. The number of rules is
generally higher than in the other case study, likely due to
the larger volume of the QoE dataset. The number of rules
obtained considering the FL and CL schemes is exactly the
same. Although the case study encompasses 15 participants,
the federated model has a number of rules that is higher than
that of the LL models by a factor of 5.9 in the IID setting and
7.3 in the non-IID setting. This is clearly due to the effective
management of duplicate and conflicting rules.

TABLE IV
QOE PREDICTION CASE STUDY: NUMBER OF RULES FOR THE DIFFERENT
DATA DISTRIBUTION SCENARIOS AND DIFFERENT LEARNING SCHEMES.

IID QL-NIID
LL 811.7 ± 37.3 657.4 ± 755.6
FL 4809 4809
CL 4809 4809

VI. CONCLUSION

In this paper we investigated an approach for Federated
Learning (FL) of Fuzzy Rule-based Classifiers (FRBCs) within

the framework of trustworthy AI. On one hand, FL en-
sures privacy preservation in decentralized collaborative model
learning; on the other hand FRBCs are generally deemed as
highly interpretable models, thus meeting the transparency
requirement for enhancing users’ trust. Our FL scheme for
the generation of FRBCs consists of a one-shot procedure and
is designed as follows: first, each local data owner generates
a set of rules based on its private data and shares them
with a central server along with summary information on
the activation degree of each rule; then the server exploits
the summary information for the computation of the weight
of each rule and aggregates the received rules by handling
duplicates and conflicts. We assessed the performance of our
federated FRBC under two real-world case studies exploring
both independent and identically distributed (IID) and non-IID
scenarios. Furthermore, the FL scheme is compared with two
alternative learning approaches, namely centralized and local
learning. Centralized learning removes the privacy constraint
and entails the adoption of the classical FRBC generation
algorithm on the union of local training sets. Local learning
waives the collaboration among participants in the sense that
each data owner learns an FRBC based only on its private
data. Results highlight that the federated approach allows
outperforming the models learned locally and obtaining classi-
fication performance close to the centralized FRBC. Although
the federated FRBCs are slightly outperformed by state-of-art
opaque models learned in a centralized fashion, the proposed
FL scheme enables the effective and efficient generation
of classification models that feature both satisfactory levels
of classification performance and of inherent interpretability.
Interesting future developments of this work include the design
of strategies for reducing the complexity of the federated
model and approaches for handling streaming data.
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