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Introduction: Al and Wireless Networks
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5G Figure from Hexa-X Deliverable D1.2, “Expanded 6G vision,
o, Year 2070203 use cases and societal values”. Online: https://hexa-
1G %Ik‘”% Standards

Technology digital
Bandwidth Ubiquitous connectivity
Datarates Fiber-like experience

1hr HD movie in 6 seconds

x.eu/wp-content/uploads/2021/05/Hexa-X D1.2.pdf

Year 1991
Standards AMPS, TAS
Technology Analog
Bandwidth

Data rates

Myt o BB
ih [ ‘.r ‘

»?] O

Physical World

Traffic prioity _o¢*
P

Human World
car

Digital World
2G m _ C. necting
Year 1991 Trustworthiness . :
StandardsGSH, GPRS, EDGE o in lligence
Technology Digita
Bandwidth Narrow Band U
Datarates < 80 - 100 Kbit/s
A 1 Extreme
experience
3G © D)
] ()
Year 2001 — “ Pl
/ ! »* —l T i
S e (1°] n..:' | ’_,;-"' {r ) Global service Sustainability ‘
Bandwidth Broad Band “ o : Coverage
Datarates upto2 bit's bl ll Z =

4G
Year 2010
Standards LT, LTE Advanced
Technology digital
Bandwidth Mobil Broad Band
Datarates DSl experience
1heHD movie in6 minutes

G IO
10-car commun®

D 5G is about Communication, Storage, Processing...

Crucial role of Al/ML techniques

Figures from https://digital-strategy.ec.europa.eu/en/library/1g-5g-infographic
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Introduction: Trustworthy Al

Human agency and oversight “Al systems and their decisions should
Technical robustness be explained in a manner adapted to
and safety the stakeholder concerned.”

Privacy and data governance

Trustworthy Al — Transparency — Traceability

Diversity non-discrimination

and fairness Explainabilty

Societal and environmental

) Communication
wellbeing

Accountability

~—

European Commission, “Ethics guidelines for trustworthy Al”
Report, 2019
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Introduction: Trustworthy Al (Cont’d)

H &flg?nggiﬁglligiggﬂﬁgch:sgeIIing Approaches / F u Zzy M Od e I S \
Interpretanle Feature Engineering
Design of Inherently Linguistic
Interpretable Models ©:> representation
' enhances semantic
Explaining "black-box" techniques . ope
ﬁ "Transparent box’ design \_ interpretability Y,

Accuracy

Explainabilty

W

Post-hoc Explainability
Techniques

Interpretability

Inspired to Arrieta et al. "Explainable Artificial Intelligence
(XAl): Concepts, taxonomies, opportunities and challenges
toward responsible AlL." Information Fusion 58 (2020): 82-115.
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Motivation and goals

* Relevant case study:
* Next Generation Networks will have stringent requirements in terms of:
e Quality of Service (offered by the network)
* Quality of Experience (user-perceived, tailored on the application)

* Vast majority of current thrusts for the adoption of Al for wireless networks
are based on “black-box” models

Accuracy

* Increasing attention for Trustworthy Al

Goals:

\ 4

* Adoption of XAl models (Fuzzy Decision Trees) in wireless networks for Interpretabilky
Quality of Experience prediction

* Experimental comparison: investigate the explainability/accuracy trade-off
in the context of tree-based models
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Background: Fuzzy Decision Tree (FDT)

* Directed acyclic graph
* Generated in a top—down way by performing recursive partitions of the attribute space.

* Typically, requires a fuzzy partition defined upon each continuous attribute.

A Ao Ars

>
bei=ar; Ce1=bsr=ar3  Crr=Dbs3
Strong Fuzzy Partition
Segatori, Armando, Francesco Marcelloni, and Witold Pedrycz.

"On distributed fuzzy decision trees for big data." IEEE
Transactions on Fuzzy Systems 26.1 (2017): 174-192.

Multi-way FDT
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Background: Fuzzy Decision Tree

: . Crisp Decision T isi
Main factors that affect explainability of FDTs [ risp ecision free ] [ Fuzzy Decision Tree ]

e Structural complexity
 Numbers of nodes/leaves

* Inference process
* Maximum association degree

* Linguistic fuzzy partition
* Semantic interpretability
e Strong triangular fuzzy partition
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Experimental Setup: QoS-QoE Dataset

* Around 69000 streaming video sessions
* Goal: to derive a mapping between QoS metrics and QoE factors (multi-class classification problem)

e Simulated in a fully controllable simulation environment at both network and streaming levels

4 29 input variables B ( )
o« ~ (0)
NoStall [51155: ~74%]
TABLE 1 f ()
INPUT ATTRIBUTES: QOS METRICS AND THEIR DESCRIPTION.
> H ° ~ (o)
Name Descripﬁon = M Mlldstall [17180- 25 /o]
TCP[Output/Input]Packet Number of TCP packets (In and Out)
TCP[Output/Input|Delay Avg. delay of TCP packets (In and Out) N
TCP[Output/Input|Jitter Avg. jitter of TCP packets (In and Out) [ °* ~ ]
TCP|[Output/Input|Ploss Loss rate of TCP packets (In and Out) Seve reSta " 794 ° 1 A)
TCPInputRetrans Packet retransmissions of TCP \_ ‘ Y,
StdNetworkRate Standard deviation of the network rate
|z]_InputRateVariation; x in 2h quantile for the network rate (mea-
{0,5.10,25.50,75,90,95,100 } sured in intervals of 2s)
StdInterATimesReq Std. dev. of inter-arrival times of segment ° . L
roquests ¢ Model evaluation via 5-fold stratified CV
[x]_InterATimesReq; x in | x™ quantile for the inter-arrival times of
\ {0,5,10,25,50,75,90,95,100} segment requests j

* Model complexity (humber of nodes, leaves)

Vasilev, Vladislav, et al. "Predicting QoE factors with machine
learning." 2018 IEEE International Conference on
Communications (ICC). IEEE, 2018.

e Evaluation metrics: Precision, Recall, F1-measure per class
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Experimental Setup: Classification Models

Segatori et al. (2018) CART scikit-learn
m {3,4} —> {MFDT-3, MEDT-4} {6, 11} —> {BDT-6, BDT-11)

S adlaaedieiel | Fuzzy infogain Infogain
Partitioning Fuzzy - a priori - supervised During tree construction
Max fuzzy sets 5 -
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m Multiway Fuzzy Decision Tree | Binary Decision Tree Random forest (RF)

scikit-learn

default
default

During trees construction


https://bitbucket.org/mbarsacchi/fuzzyml/src/master/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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Experimental Results: Original Dataset

RESULTS ON THE ORIGINAL DATASET. AVERAGE VALUES.

F1-measure Model Complexity No Stall Mild Stall Severe Stall
Training Leaves Nodes Fl1 Prec. Recall
MEDT-3 0.8443 88.8 115.2 0.9008 0.8881 09149 § 0.6785 0.7017 0.6639 jf 0.0279 0.1846  0.0151
MEDT-4 | 0.8493 331.6 438.6 0.9032 09025 09045 § 0.7015 0.6923  0.7149 jj§ 0.0257 0.1833  0.0138
BDT-6 0.8764 60.2 119.4 0.9173  0.9021 09335 §§ 0.7228 0.7588  0.6938 §§ 0.5207 0.7599 0.3994
BDT-11 0.9158 740.0 1479.0 0.9209 09103 09320 § 0.7378 0.7658 0.7142 §§ 0.6068 0.6548  0.5681
RF 0.9999 337601.0  675102.0 0.9166 0.9539 \0.7777 0.7376 JI\0.6536 0.5291

(a) micro-average F1

DS d

(b) Model Complexity

Moderately low performance on the intermediate class (Mild Stall)

Considerably low performance on the minority class (Severe Stall)
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(c) Precision and Recall by class on test set.

BDTs slightly outperform MFDTSs in terms of micro-average F1-score on the test set

RF achieves highest overall performance but with huge global complexity (and low interpretability)

[ Dataset re-balancing ]
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Experimental Results: Dataset re-balancing Nostall: 2000

Mild Stall: 2000

Severe Stall 695

RESULTS AFTER RE-BALANCING THROUGH RANDOM UNDERSAMPLING. AVERAGE VALUES.

F1-measure Model Complexity No Stall Mild Stall Severe Stall

Leaves Nodes F1 Prec. Recall Recall \/ FI

Training

115.0 143.6 0.8712 09396 0.8125
396.0 500.8 0.8907 09415 0.8451
55.0 109.0 0.8731  0.9504 0.3082
BDT-11 0.9447 278.4 555.8 0.8689 09311 0.8146 0.5152 03790 0.8124

0.5546 0.4784 0.6613
0.5590 04506 0.7607
0.5235 03811  0.8402

MFDT-3 0.7859
MFEDT-4 0.8167
BDT-6 0.8508

RF 1.0 43911.2 877224 0.9070  0.9537 0.8349 /\0.6291

(a) micro-average F1 (b) Model Complexity (c) Precision and Recall by class on test set.

* All models improve their recall on Mild Stall and Severe Stall classes
* MFDTs comparable or slightly better than BDTs in terms of micro-average F1-score

* RF achieves highest overall performance but with huge global complexity (and low interpretability)
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Experimental Results: Explainability
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(b) Results on class 2: SevereStall

 BDTs and MFDTs achieve different trade-offs between
precision and recall

* BDT-6 outperforms BDT-11 with respect to all objectives
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Ryppr—y + IF 100_InlerATimesReq is VeryHigh

Rppr—¢:

AND 25_InterATimesReq is VeryHigh
AND TCPInpulPloss is VeryLow
THEN SlallLabel is SevereStall

IF StdInterATimesReq > 1.30

AND 25_InterATimesReq > 0.86

AND StdinterATimesReq > 1.59

AND 25_InputRate Variation > 186749.00
AND TCPOutputJitter > 0.00

AND 90_InputRate Variation > 473853.50
THEN StallLabel is SevereStall

o
NS Hexa-X'



14 /15

Conclusions

e Adoption of fuzzy models for addressing the task of Quality of Experience classification
* Experimental comparison between tree-based models on a recently proposed QoS-QoE dataset,
characterized by a severe class imbalance

* Multiway Fuzzy Decision trees achieves competitive performance in capturing stall events, in
terms of precision, recall, micro-avg F1-measure.

* Multiway Fuzzy Decision trees feature higher semantic interpretability than Binary Decision Trees
* Random Forest outperforms all other models but does not feature inherent interpretability

What’s next:
* QoS-QoE as a time-series prediction problem

* Multi-objective evolutionary algorithms for concurrently optimizing accuracy and complexity of FDTs
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Thank you for your attention
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