

UNIVERSITÀ DI PISA

# XAI Models for Quality of Experience Prediction in Wireless Networks

Alessandro Renda, Pietro Ducange, Gionatan Gallo, Francesco Marcelloni









### **Introduction: Al and Wireless Networks**





Figure from Hexa-X Deliverable D1.2, "Expanded 6G vision, use cases and societal values". Online: https://hexax.eu/wp-content/uploads/2021/05/Hexa-X D1.2.pdf



Crucial role of **AI/ML** techniques

Figures from <a href="https://digital-strategy.ec.europa.eu/en/library/1g-5g-infographic">https://digital-strategy.ec.europa.eu/en/library/1g-5g-infographic</a>





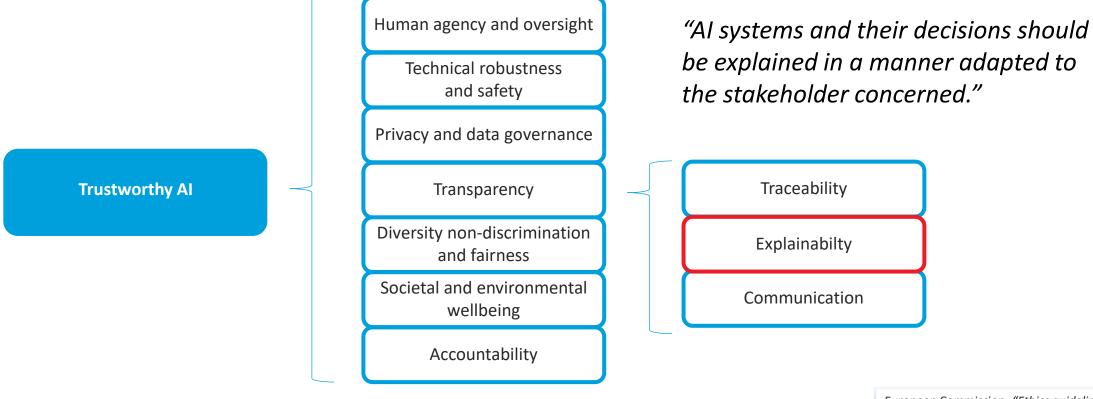








### **Introduction: Trustworthy AI**



European Commission, <u>"Ethics guidelines for trustworthy AI</u>" Report, 2019





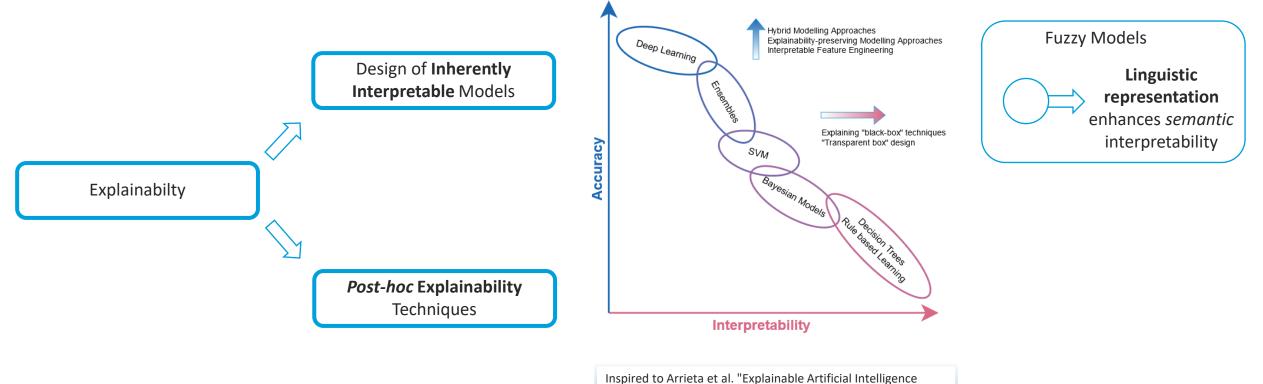








### **Introduction: Trustworthy AI (Cont'd)**



(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI." Information Fusion 58 (2020): 82-115.





G





### **Motivation and goals**

- Relevant case study:
  - Next Generation Networks will have stringent requirements in terms of:
    - Quality of Service (offered by the network)
    - Quality of Experience (user-perceived, tailored on the application)
- Vast majority of current thrusts for the adoption of AI for wireless networks are based on "black-box" models
- Increasing attention for Trustworthy AI

### **Goals:**

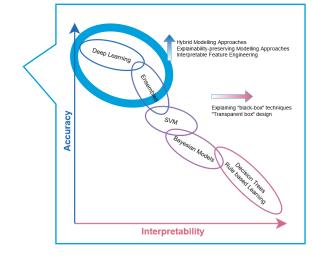
- Adoption of XAI models (Fuzzy Decision Trees) in wireless networks for Quality of Experience prediction
- Experimental comparison: investigate the explainability/accuracy trade-off in the context of tree-based models





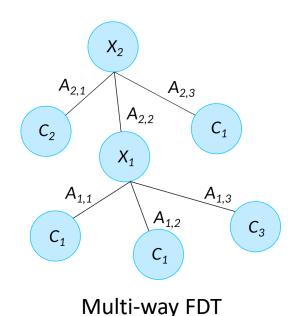


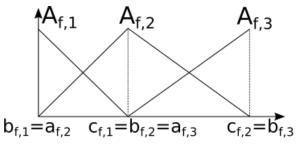




### **Background: Fuzzy Decision Tree (FDT)**

- Directed acyclic graph
- Generated in a top-down way by performing recursive partitions of the attribute space.
- Typically, requires a **fuzzy partition defined upon each continuous attribute**.





Strong Fuzzy Partition

Segatori, Armando, Francesco Marcelloni, and Witold Pedrycz. "On distributed fuzzy decision trees for big data." IEEE Transactions on Fuzzy Systems 26.1 (2017): 174-192.





JULY 11-JULY 14

2021





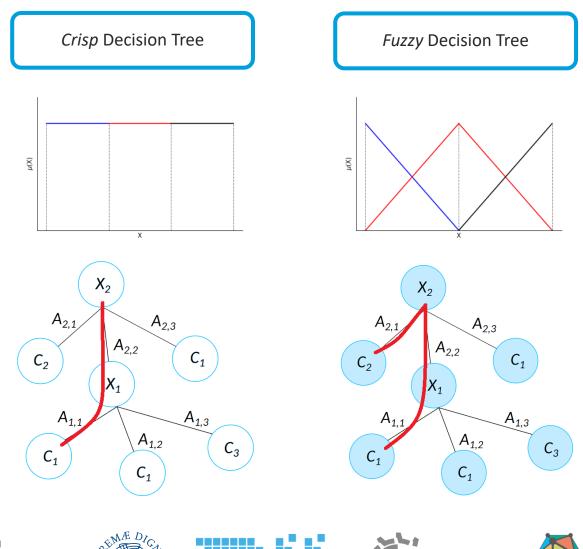


### 8 / 15

# **Background: Fuzzy Decision Tree**

#### Main factors that affect **explainability** of FDTs

- Structural complexity
  - Numbers of nodes/leaves
- Inference process
  - Maximum association degree
- Linguistic fuzzy partition
  - Semantic interpretability
  - Strong triangular fuzzy partition













### **Experimental Setup:** *QoS-QoE* **Dataset**

 $f(\cdot)$ 

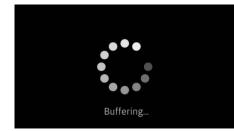
- Around 69000 streaming video sessions
- Goal: to derive a mapping between **QoS metrics** and **QoE factors** (multi-class classification problem)
- Simulated in a fully controllable simulation environment at both *network* and *streaming* levels

| 29 input variables                                             |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| TABLE I   Input attributes: QoS metrics and their description. |  |  |  |  |  |  |  |  |  |
| Description                                                    |  |  |  |  |  |  |  |  |  |
| Number of TCP packets (In and Out)                             |  |  |  |  |  |  |  |  |  |
| Avg. delay of TCP packets (In and Out)                         |  |  |  |  |  |  |  |  |  |
| Avg. jitter of TCP packets (In and Out)                        |  |  |  |  |  |  |  |  |  |
| Loss rate of TCP packets (In and Out)                          |  |  |  |  |  |  |  |  |  |
| Packet retransmissions of TCP                                  |  |  |  |  |  |  |  |  |  |
| Standard deviation of the network rate                         |  |  |  |  |  |  |  |  |  |
| $x^{\text{th}}$ quantile for the network rate (mea-            |  |  |  |  |  |  |  |  |  |
| sured in intervals of 2s)                                      |  |  |  |  |  |  |  |  |  |
| Std. dev. of inter-arrival times of segment                    |  |  |  |  |  |  |  |  |  |
| requests                                                       |  |  |  |  |  |  |  |  |  |
| x <sup>th</sup> quantile for the inter-arrival times of        |  |  |  |  |  |  |  |  |  |
| segment requests                                               |  |  |  |  |  |  |  |  |  |
|                                                                |  |  |  |  |  |  |  |  |  |

Vasilev, Vladislav, et al. "Predicting QoE factors with machine learning." 2018 IEEE International Conference on Communications (ICC). IEEE, 2018.







Model evaluation via 5-fold stratified CV

- Model complexity (number of nodes, leaves)
- Evaluation metrics: Precision, Recall, F1-measure per class







### **Experimental Setup: Classification Models**

| Model               | Multiway Fuzzy Decision Tree         | <b>Binary Decision Tree</b>       | Random forest (RF)        |
|---------------------|--------------------------------------|-----------------------------------|---------------------------|
| Implementation      | <u>Segatori et al. (2018)</u>        | CART scikit-learn                 | <u>scikit-learn</u>       |
| Depth               | <b>{3,4}</b> -> {MFDT-3, MFDT-4}     | <b>{6, 11}</b> -> {BDT-6, BDT-11} | default                   |
| Splitting criterion | Fuzzy infogain                       | Infogain                          | default                   |
| Partitioning        | Fuzzy - <i>a priori -</i> supervised | During tree construction          | During trees construction |
| Max fuzzy sets      | 5                                    | -                                 | -                         |





דו אזת 11 אזחר 2021





### **Experimental Results: Original Dataset**

|        | F1-measure |        | Model Co | omplexity | No Stall |        |        | Mild Stall |        |        | Severe Stall |        |        |
|--------|------------|--------|----------|-----------|----------|--------|--------|------------|--------|--------|--------------|--------|--------|
|        | Training   | Test   | Leaves   | Nodes     | F1       | Prec.  | Recall | <b>F</b> 1 | Prec.  | Recall | F1           | Prec.  | Recall |
| MFDT-3 | 0.8443     | 0.8422 | 88.8     | 115.2     | 0.9008   | 0.8881 | 0.9149 | 0.6785     | 0.7017 | 0.6639 | 0.0279       | 0.1846 | 0.0151 |
| MFDT-4 | 0.8493     | 0.8472 | 331.6    | 438.6     | 0.9032   | 0.9025 | 0.9045 | 0.7015     | 0.6923 | 0.7149 | 0.0257       | 0.1833 | 0.0138 |
| BDT-6  | 0.8764     | 0.8678 | 60.2     | 119.4     | 0.9173   | 0.9021 | 0.9335 | 0.7228     | 0.7588 | 0.6938 | 0.5207       | 0.7599 | 0.3994 |
| BDT-11 | 0.9158     | 0.8737 | 740.0    | 1479.0    | 0.9209   | 0.9103 | 0.9320 | 0.7378     | 0.7658 | 0.7142 | 0.6068       | 0.6548 | 0.5681 |
| RF     | 0.9999     | 0.8953 | 337601.0 | 675102.0  | 0.9348   | 0.9166 | 0.9539 | 0.7777     | 0.8241 | 0.7376 | 0.6536       | 0.8670 | 0.5291 |
|        |            |        |          |           |          |        |        |            |        |        |              |        |        |

#### **RESULTS ON THE ORIGINAL DATASET. AVERAGE VALUES.**

(a) micro-average F1

(b) Model Complexity

(c) Precision and Recall by class on test set.

- BDTs slightly outperform MFDTs in terms of micro-average F1-score on the test set
- **RF** achieves highest overall performance but with huge global complexity (and low interpretability)
- Moderately low performance on the intermediate class (Mild Stall)
- Considerably low performance on the minority class (Severe Stall)

FUZZ-IE LUXEM HANDLING UNCERTAINTY









### **Experimental Results: Dataset re-balancing**

No Stall: 2000 Mild Stall: 2000 Severe Stall 695

**RESULTS AFTER RE-BALANCING THROUGH RANDOM UNDERSAMPLING. AVERAGE VALUES.** 

|        | F1-measure |        | Model Complexity |         | No Stall      |        |        | Mild Stall |        |        | Severe Stall |        |        |
|--------|------------|--------|------------------|---------|---------------|--------|--------|------------|--------|--------|--------------|--------|--------|
|        | Training   | Test   | Leaves           | Nodes   | <b>F</b> 1    | Prec.  | Recall | F1         | Prec.  | Recall | F1           | Prec.  | Recall |
| MFDT-3 | 0.7859     | 0.8119 | 115.0            | 143.6   | 0.8712        | 0.9396 | 0.8125 | 0.6856     | 0.5916 | 0.8171 | 0.5546       | 0.4784 | 0.6613 |
| MFDT-4 | 0.8167     | 0.8335 | 396.0            | 500.8   | 0.8907        | 0.9415 | 0.8451 | 0.7071     | 0.6323 | 0.8024 | 0.5590       | 0.4506 | 0.7607 |
| BDT-6  | 0.8508     | 0.8112 | 55.0             | 109.0   | 0.8731        | 0.9504 | 0.8082 | 0.6862     | 0.5920 | 0.8189 | 0.5235       | 0.3811 | 0.8402 |
| BDT-11 | 0.9447     | 0.8026 | 278.4            | 555.8   | 0.8689        | 0.9311 | 0.8146 | 0.6611     | 0.5817 | 0.7665 | 0.5152       | 0.3790 | 0.8124 |
| RF     | 1.0        | 0.8575 | 43911.2          | 87722.4 | <u>0.9070</u> | 0.9537 | 0.8649 | 0.7452     | 0.6740 | 0.8349 | 0.6291       | 0.4958 | 0.8703 |

(a) micro-average F1

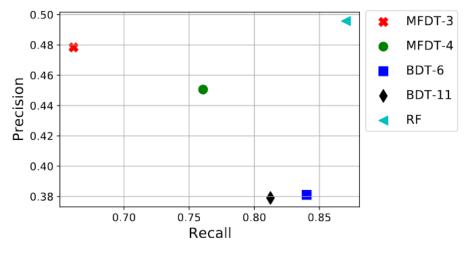
(b) Model Complexity

(c) Precision and Recall by class on test set.

- All models improve their recall on Mild Stall and Severe Stall classes
- MFDTs comparable or slightly better than BDTs in terms of micro-average F1-score
- **RF** achieves highest overall performance but with huge global complexity (and low interpretability)



### **Experimental Results: Explainability**



(b) Results on class 2: SevereStall

- BDTs and MFDTs achieve different trade-offs between precision and recall
- BDT-6 outperforms BDT-11 with respect to all objectives

- R<sub>MFDT-4</sub>: **IF** 100\_InterATimesReq **is** VeryHigh **AND** 25\_InterATimesReq **is** VeryHigh **AND** TCPInputPloss **is** VeryLow **THEN** StallLabel is SevereStall
- $\begin{array}{ll} R_{BDT-6}: \ \mathbf{IF} \ StdInterATimesReq > 1.30 \\ & \mathbf{AND} \ 25\_InterATimesReq > 0.86 \\ & \mathbf{AND} \ StdInterATimesReq > 1.59 \\ & \mathbf{AND} \ 25\_InputRateVariation > 186749.00 \\ & \mathbf{AND} \ TCPOutputJitter > 0.00 \\ & \mathbf{AND} \ 90\_InputRateVariation > 473853.50 \\ & \mathbf{THEN} \ StallLabel \ is \ SevereStall \end{array}$











### Conclusions

- Adoption of fuzzy models for addressing the task of Quality of Experience classification
- Experimental comparison between tree-based models on a recently proposed QoS-QoE dataset, characterized by a severe class imbalance
  - Multiway Fuzzy Decision trees achieves competitive performance in capturing *stall events,* in terms of precision, recall, micro-avg F1-measure.
  - Multiway Fuzzy Decision trees feature higher semantic interpretability than Binary Decision Trees
  - Random Forest outperforms all other models but does not feature inherent interpretability

What's next:

- QoS-QoE as a time-series prediction problem
- Multi-objective evolutionary algorithms for concurrently optimizing accuracy and complexity of FDTs









### Thank you for your attention













15 / 15