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Abstract—Federated clustering lets multiple data owners col-
laborate in discovering patterns from distributed data without
violating privacy requirements. The federated versions of tradi-
tional clustering algorithms proposed so far are, however, “lossy”
since they fail to identify exactly the same clusters as the original
versions executed on the merged data stored in a centralized
server, as would happen if no privacy constraint occurred. In this
paper, we propose federated procedures for losslessly executing
the C-Means (CM) and the Fuzzy C-Means (FCM) algorithms in
both horizontally and vertically partitioned data scenarios, while
preserving data privacy. We formally prove that the proposed
federated procedures identify the same clusters determined by
applying the algorithms to the union of all local data. Further, we
present an extensive experimental analysis for characterizing the
behavior of the proposed approach in a typical federated learning
scenario, that is, as the fraction of participants in the federation
changes. We focus on the federated FCM and the horizontally
partitioned data, which is the most interesting scenario. We show
that the proposed procedure is effective and is able to achieve
competitive performance with respect to two recently proposed
versions of federated FCM for horizontally partitioned data.

Impact Statement—Data access limitations in a distributed
setting, often due to privacy needs, represent an obstacle to
extracting knowledge from data belonging to different owners:
to overcome such an issue, Federated Learning (FL) has been
proposed. So far, unsupervised FL, and federated clustering
in particular, has received less attention than supervised FL,
although several interesting applications cannot rely on labelled
data. In addition, the few federated versions of traditional
clustering algorithms proposed in the literature do not faithfully
reproduce the behavior of the centralized versions applied to
all merged data. This paper provides data scientists with hori-
zontal and vertical federated versions, behaving exactly like the
original ones, of the well-known and popular CM and FCM
algorithms, thus avoiding possible misleading interpretations. The
proposed versions can be effectively used in sensitive domains like
healthcare, finance, and telecommunications, yet complying with
stringent data regulations and policies.

Index Terms—Federated Clustering, Federated Learning, fuzzy
c-means, k-means,

I. INTRODUCTION

FEDERATED Learning (FL) [1] has been recently pro-
posed as a solution for the collaborative training of an ML

model, to overcome the shortcomings of data centralization. In
an FL system, a shared global model is learned by aggregating
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locally-computed updates from remote data owners, with no
need to expose raw private data across parties.

Algorithmic challenges in FL depend on data distribution
patterns [1], [2]: in horizontally partitioned data, objects
are spread over multiple distinct nodes, and the same set
of features describes all of them. Conversely, in a vertical
partitioning scenario the information for a single object is split
across multiple nodes, each with a partial view (a subset of
features) of all the objects.

Since the introduction of FL by Google [3], [4], most
of the work on FL has addressed the horizontal setting,
revolving around the centralized federated averaging (FedAvg)
protocol for model aggregation [3]. FedAvg is a round-based,
collaborative Stochastic Gradient Descent (SGD) optimization
procedure, with the following steps performed in each round:
(i) the server sends out the current global model to data
owners (or a subset thereof); (ii) each selected data owner
updates the local model via SGD on its examples; (iii) each
selected data owner sends back its updated model to the server;
(iv) the server obtains a new global model by averaging the
locally updated models, weighted according to the number of
examples.

Several extensions of FedAvg have been proposed to adapt
FL to heterogeneous settings [5]–[8]. Mainstream FL typically
makes use of SGD-optimized models. Indeed, FL has been pri-
marily employed for the collaborative training of deep neural
networks for supervised learning, e.g., in image classification
and language modelling tasks. Other ML techniques, and
clustering in particular, have been much less explored in FL
[9]. Nonetheless, clustering plays a pivotal role in several real-
world applications. In the healthcare domain, for instance, it
is used for medical diagnosis, biological data analysis, and
medical image segmentation [10]. However, privacy issues
hamper the sharing of medical data, typically kept in isolated
data centers: such a setting prevents the use of traditional
clustering algorithms and asks for novel paradigms properly
designed for a distributed environment. Another application
is the recognition of driving styles for real-world drivers,
which offers benefits like safer driving and cost efficiency
[11]. Typically, clustering methods group drivers based on
trajectory data. However, a traditional, centralized approach
involves collecting and sharing private drivers’ data. Federated
clustering can overcome such a privacy problem.

Clustering is useful not only for the identification of groups
within a dataset: it is also frequently applied as a numerosity
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reduction technique [12] or as a preprocessing step in data
mining pipelines, e.g., for the estimation of antecedent param-
eters in Fuzzy Rule-based Systems [13]. Thus, it is crucial to
revisit the most popular clustering algorithms to adapt them
to the FL setting.

The overarching goal of this work is the proposal of a
unifying framework for federated clustering (i.e., identification
of clusters of unlabelled data instances spread over multiple,
distributed clients, with no sharing of raw data), for both hor-
izontally and vertically partitioned data. This ensures privacy
preservation, a fundamental requirement toward trustworthy
AI [14], urgently advocated by governmental entities and
public opinion. As privacy enforcement impedes the collection
of distributed data for centralized processing, clustering might
be carried out locally, reaching results different from what
could be obtained working on all data. Federated clustering
allows for uncovering “global” patterns, ensuring users’ pri-
vacy preservation as well. The main challenge of this task
consists of revisiting the traditional optimization procedures of
clustering algorithms to work over a federated setting, possibly
generating the same clusters obtainable by centralizing all
the data. Furthermore, other issues must be addressed: the
number of clients can grow fast, their participation in the
federation may be unstable, and their data may differ in terms
of distribution and volumes.

In this paper, we propose an unifying framework for the
FL execution of the traditional c-means (CM) [15] and fuzzy
c-means (FCM) [16] algorithms for both horizontally and ver-
tically partitioned data1, stemming from initial partial results
presented in one of our previous works [17]. We mainly choose
these two algorithms because of their popularity, due to their
intuitive operation and computational efficiency. Moreover,
with the coverage of the fuzzy variant besides the crisp one,
we make federated clustering applicable also in scenarios
requiring uncertain attribution of objects to clusters. Even
if, for the fuzziness factor set to 1, the traditional FCM
reduces to FC, its time complexity is higher than that of
CM, since it is quadratic in the number of clusters instead
of linear. Inherent limitations of CM and FCM, typical of
partitioning methods, have been studied in the literature: e.g.,
we can recall the sensitivity to outliers and the inability
to capture non-convex clusters. Federated variants of other
clustering approaches (e.g., hierarchical, density-based) may
equally deserve attention, but they do not fit into the same
unifying framework and require ad-hoc methods, and are thus
beyond the scope of this paper.

Although both CM and FCM aim to minimise a differen-
tiable global objective function, neither FedAvg nor a gradient-
descent approach is adopted in our proposal. Instead, we
define a strategy to alternately execute the object assignment
to clusters and the centres’ update in a collaborative way. Such
steps correspond to those of the traditional algorithms for a
global dataset stored in a central server. We theoretically prove
that, given the same initial centroids, our proposed federated
versions obtain the same results as the centralised counterparts,
yet enabling privacy-preserving clustering among scattered

1Source code available: https://github.com/Unipisa/FederatedClustering

data owners.
The main contributions of our work can be summarized as

follows:
• novel federated versions of CM and FCM (named LLF-

CM and LLF-FCM, respectively) are proposed for both
horizontally and vertically partitioned data, presented
according to a general and unifying federated framework,
named LLF (LossLess Federation);

• the LLF framework enables federated clustering over
decentralized data, thus preserving the privacy of data
owners; furthermore, we formally show that the behavior
of federated clustering algorithms is equivalent to the
one of the respective centralized versions applied to the
merged data partitions;

• an extensive experimental analysis carried out on hori-
zontal LLF-FCM shows the robustness of the approach
with respect to the number of contributing clients, and its
competitive performance compared to existing works on
federated FCM;

• an approach for carefully initialising the horizontal LLF-
FCM (in a privacy-preserving manner) is introduced and
shown to improve the clustering accuracy.

The rest of the paper is organized as follows: Section II
discusses related works. Section III describes the background
regarding FL, and the general setting of our investigation.
Sections IV and V introduce our federated versions of CM
and FCM over horizontally and vertically partitioned data,
respectively. In Section VI we discuss some experimental
results. Finally, Section VII reports some concluding remarks.

II. RELATED WORKS

The CM (a.k.a. k-means) clustering algorithm partitions the
dataset objects into C clusters (each indicated by Γc, with
c = {1, . . . , C}) in which each object belongs to the cluster
with the nearest mean (cluster prototype); the traditional batch
optimization procedure is known as Lloyd’s algorithm [15].
CM is among the most popular clustering algorithms, and
results in a crisp or hard partitioning, where each object
belongs only to one single cluster. The FCM clustering al-
gorithm [16] leverages the fuzzy set theory, extensively used
in cluster analysis [18], and allows for fuzzy partitioning: an
object may belong to multiple clusters with a membership
degree in [0, 1]. The number of clusters is an input parameter
in both algorithms.

Many adaptations of CM and FCM have been proposed
for different application scenarios. In this section, we discuss
approaches concerning the decentralized setting, and able to
comply with the privacy needs of data owners. Notably, FL is
known to address such requirements, but it has been scarcely
investigated for unsupervised learning. However, relevant ex-
tensions of CM and FCM have been proposed in other research
areas that share some common traits with FL.

In a distributed setting, data are spread across multiple dis-
tinct parties (or data owners) usually according to some given
pattern, indicated as data partitioning. In practice, the most
reasonable and frequently occurring ones are the horizontal
and vertical schemes (see Fig. 1b), which ask for different FL
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(a) Horizontal FL (b) Vertical FL

Fig. 1. Data partitioning patterns. Example with two data owners P 1 and
P 2: (a) Horizontal and (b) Vertical.

algorithms. Let M be the number of data owners; the feature
space, the local dataset, and the sample ID space of the m-th
data owner are indicated by Fm, Xm, and Im, respectively.
Horizontal partitioning is formally described as follows:

Fm = Fn, Im ̸= In ∀ Xm,Xn with m ̸= n (1)

In this case, the dataset is said to be sample-partitioned.
Similarly, the vertical partitioning (Fig. 1b) is defined as

Fm ̸= Fn, Im = In ∀ Xm,Xn with m ̸= n (2)

The dataset is said to be feature-partitioned: each data owner
holds the values for a specific subset of the features only,
across all the samples.

The field of distributed ML has similarities with horizontal
FL [1], but it just exploits multiple nodes to boost processing
power [19]. The MapReduce programming model [20] has
been used for a structured parallelization of the CM algorithm
[21]. For example, Balcan et al. [22] propose distributed
coreset-based solutions for c-means and c-median clustering
with no centralized coordinator. Besides the focus on privacy
preservation, a set of key properties can tell apart FL from
distributed ML [3]: in FL, data from different participants may
have different volumes and distribution (non-i.i.d.); further-
more, the number of involved clients may be arbitrarily large
and variable due to limited and unstable communication.

The area of Secure Multi-Party Computation (SMC), pi-
oneered by Yao in the 1980s [23], provides a framework to
enable multiple parties to compute an agreed-upon function on
their private input [9]. Cryptography allows SMC to achieve
complete zero-knowledge (each party knows nothing except
its input and output) without sacrificing accuracy [1], [24].
Several contributions on privacy-preserving CM clustering
algorithms have been presented [25]: although the iterative
nature of CM makes zero-knowledge unattainable, private
implementations have been proposed both for horizontally [26]
and for vertically [27] partitioned data. However, cryptography
and SMC tools introduce severe computation overheads and
hamper the scalability of the approaches [24], [28].

Recently, Lyu et al. [24] have addressed privacy-preserving
collaborative fuzzy clustering by preceding the clustering stage
(based on FCM) with non-linear transformation and random
projection of local raw data onto a lower dimensional space.
The approach is shown to be effective, at a limited cost in
terms of accuracy, in mitigating specific attacks carried out by

the central server, which may also collude with some of the
participants to violate user privacy.

Unlike the works mentioned above, however, in this paper
we assume a semi-honest central server [29]. Despite its rele-
vance in real-world applications, especially for the horizontal
partitioning [1], clustering under such weak privacy model
has not been adequately investigated in the FL literature.
Conversely, privacy issues are neglected in a recent work
focused on the federated implementation of the CM algorithm
for heterogeneous environments [30].

To the best of our knowledge, only two recent works
[31], [32] on federated clustering assume the same privacy
model and communication topology (i.e., orchestration by a
central server), and reference algorithms as we do. The first
work describes a horizontal federated version of FCM that
exploits a gradient-descent optimization procedure [31]. More
specifically, each FL round encompasses the following steps:
(i) the server shares the prototypes with the clients, (ii) each
client locally executes several iterations of the traditional FCM
procedure by alternately updating the partition matrix and the
prototypes; then it computes the gradient of the FCM cost
function with respect to the prototypes based on local data and
sends it back to the server; (iii) the server evaluates the average
of the gradients received by the clients, weighted with number
of training samples on each node and, similarly to FedSGD
[3], updates the prototype through a step of gradient-descent
optimization. In our paper we refer to this algorithm as GDF-
FCM (after “Gradient Descent Federation”). Its results are
shown to be close to, but not equal, those of the traditional
FCM algorithm applied to the global dataset. As described,
the GDF-FCM optimization does not follow the traditional
Lloyd’s procedure, and may be subject to instability.

A more recent proposal for federated FCM adopts a round-
based optimization as well [32]. Each round is composed of
the following steps: (i) the server shares the prototypes with
the clients, (ii) each client executes locally the traditional
FCM procedure up to convergence, and returns its (locally
computed) “candidate” prototypes to the server; (iii) the server
updates the global prototypes through CM applied on the set
of candidate prototypes received from the clients.. The k-
means++ initialization [33] is used to improve both the CM
accuracy and speed. In our paper we refer to this algorithm
as C2F-FCM (after “Clustering of Clusterings Federation”).
As it happened for GBD-FCM [31], also C2F-FCM does not
guarantee the obtained fuzzy partition to be the same as in
the centralized case. Furthermore, the execution of each round
is computationally heavy: each client must run a complete
FCM execution, and the server must run CM on the candidate
prototypes returned by the clients.

We say that a federated version of a clustering algorithm is
lossless with respect to the traditional version of the same al-
gorithm applied to the global dataset (obtained by merging the
local data) if both obtain exactly the same clusters. Unlike the
mentioned state-of-art approaches, our LLF versions closely
adhere to the Lloyd’s optimization procedure and are shown
to be lossless, yet preserving the participants’ privacy. Further,
our LLF approach covers the case of vertically partitioned
data, while the two others do not.
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(a) Centralized FL (b) Fully-decentralized FL

Fig. 2. FL categorization based on communication topology: (a) Centralized
FL and (b) Fully-decentralized FL.

III. FEDERATED LEARNING BACKGROUND

Several recent surveys presented thorough overviews of FL
[1], [2], [9], [28], [34], [35]. In this section, we introduce the
used notation and recall our proposal’s most important aspects.

Let P 1, P 2, . . . , PM be M parties, also referred to as
clients or data owners, and X1,X2, . . . ,XM their relative
local datasets. The global dataset is the union of all the local
datasets: Xsum =

⋃M
m=1 X

m. The local dataset of the m-th
party is Xm = {xm

1 ,xm
2 , . . . ,xm

Nm
}: it contains Nm objects,

each indicated as xm
j .

An FL system is a learning process whose participants
collaboratively train a model Model fed without exposing their
(private) data to others. Let Model sum be the model trained on
Xsum : such global dataset can be obtained only by gathering
all data in a centralized location, clearly violating privacy
requirements. Model fed is learned with the federated version
of the ordinary ML algorithm used for Model sum . We ex-
pect Model fed to closely trails Model sum . In clustering, the
clusters generated by the federated versions (Model fed ) are
expected to closely approximate those by the centralised ver-
sions (Model sum ). We will prove that our proposed federated
versions of the clustering algorithms are lossless.

The FL paradigm may be used in scenarios characterized
by different communication topologies and scales of federation
[28], [35]. E.g., depending on the communication topology, we
may have centralized and fully-decentralized FL systems. In
the former (Fig. 2a), a central server orchestrates the learning
process and aggregates the model updates received from the
parties. In the latter (Fig. 2b), information across the parties is
shared peer-to-peer, with no need for centralized coordination.

Scale of federation refers to the number of involved parties
and data availability: cross-silo and cross-device FL are the
two most common settings. In cross-silo FL, the clients are
organizations or data centers, and only a few parties are
typically present (ranging from two to a few tens), each with
a relatively large amount of data and computational power.
Conversely, in cross-device FL clients may be much more,
and each party has limited data and computational power.

In this paper, we introduce federated versions of the CM and
FCM clustering algorithms for both vertically and horizontally
partitioned data in a centralized communication topology,
with no limitation on the number of participants. Vertical FL
typically adopts entity alignment techniques [28], aimed at
spotting out the overlapped samples among the participants to
the federation [36]; such alignment can be accomplished with-
out compromising user privacy, as in the case of a downstream
federated gradient tree-boosting over vertically partitioned data

[37]. However, for the purpose of this work and with no loss
of generality, we assume the samples to be aligned across the
parties. Concerning the privacy model, we observe that the
server assumes a key role in privacy issues in a centralized
communication topology. As it is typical in FL [1], we assume
honest participants and a semi-honest, or honest-but-curious,
central server: it gathers information without modifying the FL
protocol but may exploit it to uncover private raw data. Privacy
is violated if the server (or, in general, any party with root
access to the server and/or to its input and output messages)
can unambiguously derive an instance of private raw data from
a participant [29]. This can occur for instance when a data
owner sends to the server statistics related to a unique instance
in the case of the horizontal federated CM algorithm. We have
extensively discussed privacy aspects in Sections IV-B and V-B
for the horizontal and vertical scenarios, respectively.

Each party can benefit from participating in the federation
since the clustering result is obtained collaboratively, exploit-
ing information from all the involved local datasets.

The distributed nature of an FL algorithm asks for the
adoption of proper communication and synchronization across
the involved parties. For the sake of conciseness and clearness,
the pseudocodes reported hereafter provide a general vision,
with no explicit breakdown of the code lines between server
and data owners, as would be expected; moreover, data trans-
missions are indicated without recurring to explicit primitives.

IV. FEDERATED CLUSTERING OVER HORIZONTALLY
PARTITIONED DATA

In this section, we focus on the scenario of horizontal
FL with a centralized communication topology. M parties
wish to obtain a partitioning of their data, taking advantage
of a clustering model to be built collaboratively without
sharing private local data. Let X1,X2, . . ., XM be the M
distinct private datasets, each with a variable number Nm of
objects over the same F -dimensional feature space: xm

j ={
xm
j,1, x

m
j,2, . . . , x

m
j,F

}
.

The federated versions of the CM and FCM clustering
algorithms (namely, LLF-CM and LLF-FCM) are derived, re-
spectively, from the traditional batch optimization [15] and the
FCM version that exploits a cluster center updating procedure
[38], which is more efficient than the original one proposed
by Bezdek [16].

CM and FCM adopt the same optimization scheme, thus
a unique horizontal federated clustering framework can be
defined for both algorithms, whose steps are summarized in the
sequence diagram in Fig. 3: it reports the actions of the server
and each data owner in successive rounds of the federated
algorithm. The complete pseudocode is reported in Algorithm
1 for the Horizontal LLF-CM and in Algorithms 2 and 3 for
the Horizontal LLF-FCM.

The server is in charge of the initialization stage: in LLF-
FCM, the fuzziness factor λ is selected and shared with each
data owner. Furthermore C cluster centers are initialized (line
2 of both algorithms). If the server knows the domain of the
features, it can randomly generate prototypes in that space:
this strategy, adopted for example in [31], fits all applications
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At each round

F

N

Server

Data Owners
m = 1, ..., M

Transmit configuration parameters

Transmit cluster centers

Evaluate object memberships to clusters
and compute summary statistics

Transmit summary statistics

Update cluster centers and check stop condition

Centers initialization procedure

Transmit stop flag

Check stop flagCheck stop flag

Fig. 3. Sequence diagram summarizing the execution of the federated CM
and FCM algorithms over horizontally partitioned data.

Algorithm 1 Horizontal Federated c-means (LLF-CM).
C: number of clusters, ε > 0: tolerance value for the stop
condition. T : maximum number of rounds

Initialization stage
Server:

1: stop flag = FALSE
2: Initialization procedure for C cluster centers V(0) =

{
v
(0)
1 , . . . ,v

(0)
C

}
Execution stage

3: At each round t, with t starting from 0:
Cluster assignment

Server:
4: Transmit V(t) to each data owner

Each data owner Pm:
5: Evaluate q

(t),m
j ∈ {1, . . . , C} for each object j, as its own cluster

assignment according to the nearest center v(t)
c

Centers update
Each data owner Pm:

6: for each cluster Γc do
7: n

(t),m
c ← count of the number of objects in cluster Γc

8: if n(t),m
c > 1 then

9: compute Ls
(t),m
c as per Eq. 3

10: else
11: (Ls

(t),m
c , n

(t),m
c )← (0, 0)

12: end if
13: end for
14: Transmit to the server all the pairs (Ls(t),mc , n

(t),m
c ) calculated above

Server:
15: Update cluster centers evaluating V(t+1) as per Eq. 5.

Termination
Server:

16: if NOT
(
||V(t+1) −V(t)||F < ε OR t > T

)
then

17: stop flag = TRUE
18: end if
19: Transmit stop flag to each data owner

Each data owner Pm & Server:
20: if NOT stop flag then
21: Proceed with the next round (line 4)
22: end if
23: ⟨Termination⟩

Algorithm 2 Horizontal Federated Fuzzy c-means (LLF-
FCM). C: number of clusters, λ > 1: fuzziness factor, ε > 0:
tolerance value for the stop condition. T : maximum number
of rounds

Initialization stage
Server:

1: stop flag = FALSE
2: Initialization procedure for C cluster centers V(0) =

{
v
(0)
1 , . . . ,v

(0)
C

}
3: Transmit the fuzziness factor λ to each data owner

Execution stage
4: At each round t, with t starting from 0:

Cluster assignment - Centers update
Server:

5: Transmit V(t) to each data owner
Each data owner Pm:

6: u(t),m,WS(t),m = LocalSums(V(t), Xm, λ)
7: Transmit (u(t),m,WS(t),m) to the server

Server:
8: Update cluster centers evaluating V(t+1) as per Eq. 7.

Termination
Server:

9: if NOT
(
||V(t+1) −V(t)||F < ε OR t > T

)
then

10: stop flag = TRUE
11: end if
12: Transmit stop flag to each data owner

Each data owner Pm & Server:
13: if NOT stop flag then
14: Proceed with the next round (line 5)
15: end if
16: ⟨Termination⟩

Algorithm 3 LocalSums(V(t), Xm, λ)
Given: V(t) - array of C cluster centers
Given: Xm - m-th dataset
Given: λ - fuzziness factor
1: WS(t),m ← zeros(C × F )
2: u(t),m ← zeros(C )
3: for each xm

j ∈ Xm do
4: denom = 0
5: for each cluster c do
6: numerc = ∥xm

j − v
(t)
c ∥

2
λ−1

7: denom = denom + 1
numerc

8: end for
9: for each cluster c do

10: µc,j = (numerc ∗ denom)−1

11: ws
(t),m
c = ws

(t),m
c + µλ

c,jx
m
j

12: u
(t),m
c = u

(t),m
c + µλ

c,j
13: end for
14: end for
15: return u(t),m,WS(t),m

where the ranges of the features are known or can be estimated,
but is not viable in cases where they are unknown. An alterna-
tive strategy would consists in letting one of the participants
initialize the centers and send them to the server: this ensures
that the starting centroids are reasonable within the feature
domain and that there is no violation of privacy (as they are
randomly generated). An orthogonal challenge concerns the
setting of parameter C, i.e. the number of clusters. In our
experiments, we will let the centers be initialized by a random
participant and we will set C as the number of classes in
each dataset. Notably, the problem of selecting the number
of clusters affects partitional clustering algorithms regardless
of the learning setting (i.e., centralized or federated) and is
typically addressed with heuristic approaches, such as the well-
known elbow method. A heuristic based on the Soft Davies
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Bouldin (SDB) index [39] compliant with the FL setting has
been proposed in [32].

The execution stage is iterated until the stop condition
occurs. At each round t, the server transmits the current array
of cluster centers to each data owner. In the following, we
provide details about the specific steps by highlighting the
differences between LLF-CM and LLF-FCM.
LLF-CM: Each data owner Pm assigns each object in

the local dataset to the cluster with the nearest cen-
ter. Let q(t),m =

[
q
(t),m
1 , q

(t),m
2 , . . . , q

(t),m
Nm

]
, q

(t),m
j ∈

{1, . . . , C}, be the vector that, for each object xm
j ,

indicates the cluster it is assigned to. Then, for each
cluster Γc, each data owner counts the relative local
cardinality n

(t),m
c and, if n(t),m

c > 1, it computes

Ls(t),mc =
∑

xm
j ∈Γc

xm
j (3)

as the linear sum of the objects in cluster Γc, otherwise it
sets both Ls(t),mc and n

(t),m
c to 0 (this is done to enforce

privacy preservation). The following information is then
transmitted to the server:

(Ls(t),mc , n(t),m
c ) ∀ c ∈ {1, . . . , C} (4)

The server, upon receiving it from all the data owners,
can proceed to update the cluster centers:

v(t+1)
c =

∑M
m=1 Ls

(t),m
c∑M

m=1 n
(t),m
c

, ∀ c ∈ {1, . . . , C} (5)

LLF-FCM: The cluster assignment step consists of evaluat-
ing the membership degree of each object to each cluster
as follows:

µc,j =

 C∑
l=1

(
∥xm

j − vc∥
∥xm

j − vl∥

) 2
λ−1

−1

∀ j, c. (6)

In the used version of FCM [38], storing the membership
matrix [µc,j ] is not necessary, with a significant reduction
of the asymptotic runtime. Specifically, each data owner
Pm computes both u(t),m and WS(t),m as described in
Algorithm 3. um is an array with C elements, whose
c-th element is the sum of the membership degrees of
the objects in Xm to cluster Γc, each raised to the λ-
th power. More formally, um = {um

1 , um
2 , . . . , um

C } and
um
c =

∑Nm

j=1 µ
λ
c,j . WSm is a C × F matrix, whose

c-th row is the sum of the data objects, weighted by
the membership degree of the objects to cluster Γc.
More formally, WSm = {wsm1 ,wsm2 , . . . ,wsmC } and
wsmc =

∑Nm

j=1 µ
λ
c,jx

m
j . Then, each data owner transmits

u(t),m and WS(t),m to the server, so that it can update
the coordinates of the centers as follows:

v(t+1)
c =

∑M
m=1 ws

(t),m
c∑M

m=1 u
(t),m
c

∀ c ∈ {1, . . . , C} (7)

In both the LLF-CM and LLF-FCM cases, the server checks
the stop condition, i.e. whether the centroids move less than
a given tolerance (the threshold ε). Formally, the tolerance
index is expressed as the Frobenius norm of the difference

in the cluster centers between two consecutive rounds. If the
stop condition is met, the execution terminates; otherwise, the
server initiates the next round, by transmitting the new centers
to the data owners. A maximum number of rounds can be
expressed to force termination as well.

A. Equivalence with the traditional algorithms executed on
the global dataset

Equivalence between the federated approaches and the cor-
responding original algorithms is demonstrated by showing
that the center update step in the federated setting (Model fed )
leads to the same result of the centralized setting (Model sum ).
Obviously, the equivalence holds as long as all clients par-
ticipate in the federation. It is also worth noting that the
termination condition depends on the overall number of rounds
and the position of the cluster centers, as it evaluates their
evolution over two consecutive rounds; thus, it can be applied
equivalently in the case of centralized and federated settings.

1) LLF-CM: Given the same initial cluster centers randomly
generated, Algorithm 1 produces the same clusters that would
be produced by the traditional CM applied to the union Xsum

of the local datasets. Indeed, assuming that all data are stored
in the central server, at each iteration the cluster centers would
be updated by the traditional CM as follows:

v(t+1)
c =

∑
x
(t),sum
j ∈Γc

x
(t),sum
j

n
(t),sum
c

∀ c ∈ {1, . . . , C} (8)

Notably, assuming that n(t),m
c > 1 ∀ c,m, Eq. 8 leads to the

same result of Eq. 5 since, for each cluster c:

M∑
m=1

Ls(t),mc =
∑

x
(t),sum
j ∈Γc

x
(t),sum
j (9)

and
M∑

m=1

n(t),m
c = n(t),sum

c . (10)

In the centralized setting, each sum is carried out in a single
step whereas in the federated setting, each sum is performed
first on a per-owner basis and then aggregated by the central
server.

2) LLF-FCM: Analogous considerations apply to LLF-
FCM (Algorithms 2,3). Under the assumption that all data are
stored in the central server, cluster centers would be updated
by the traditional FCM as follows:

v(t+1)
c =

∑N
j=1 µ

λ
c,jx

(t),sum
j∑N

j=1 µ
λ
c,j

, ∀ c ∈ {1, . . . , C} (11)

The center of the c-th cluster is updated as the weighted
average of the objects assigned to the cluster: the weights are
the membership degrees of the objects to the cluster (µc,j),
raised to the λ-th power. Equation 11 (centralized setting) and
Eq. 7 (federated setting) lead to the same result. In fact, for
each cluster c,
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M∑
m=1

ws(t),mc =

N∑
j=1

µλ
c,jx

(t),sum
j (12)

and

M∑
m=1

u(t),m
c =

N∑
j=1

µλ
c,j (13)

We have proved that the horizontal federated versions of the
algorithms are equivalent, and therefore lossless, compared to
the traditional versions applied to the global dataset.

B. Privacy analysis
1) LLF-CM: The analysis of Algorithm 1 highlights that

raw data are not exposed while learning the cluster represen-
tation, thus protecting the privacy of data owners. Furthermore,
since each data owner only transmits the number of objects
and the linear sum of data objects assigned to each cluster,
the server cannot infer the exact value of the features of
any single object. The only exception arises when, for a
given m and a given c, we have n

(t),m
c = 1 (i.e., Γc is

a “singleton cluster”): in this case the vector Ls(t),mc holds
the exact coordinates of the only object xm

j in cluster c for
the owner Pm. This information disclosure can be avoided
using a simple trick to prevent local singleton clusters from
contributing to the update of the relative centers: whenever
n
(t),m
c = 1, both the values for Ls(t),mc and n

(t),m
c are forced

to 0 before transmitting them (see line 11). It is worth noticing
that client Pm still participates in the federation and actually
shares information for all the not-singleton clusters. A very
unlikely pathological situation might occur when the server
receives no information on one cluster, but it can be handled
with a server-side random perturbation of the cluster center. In
practice, in all our experiments this situation has never shown
up. When nt,m

c > 1, the information shared with the server
does not reveal the raw data since for each feature f it results
in an indeterminate equation with infinitely many solutions. In
the case nt,m

c = 2 , for example, the indeterminate equation is
in the form xm

1,f +xm
2,f = Lst,mc,f , where xm

1,f and xm
2,f are the

values of the generic feature f for the two instance assigned
to cluster c on client m.

2) LLF-FCM: The privacy analysis on Horizontal Federated
FCM has already been discussed in a previous paper [17]:
for the sake of comprehensiveness, it is summarized hereafter
as well. The server can infer the value of the features of
each single sample under certain conditions. At each round,
each data owner discloses the following information: for each
cluster c, the sum u

(t),m
c of the membership degrees, each

raised to the λ-th power, and the array ws
(t),m
c of the weighted

sum of the objects, according to their degree of membership
to cluster c. Sum u

(t),m
c can be represented by the following

C equations:
µλ
1,1 + µλ

1,2 + · · ·+ µλ
1,Nm

= α1

µλ
2,1 + µλ

2,2 + · · ·+ µλ
2,Nm

= α2

. . .

µλ
C,1 + µλ

C,2 + · · ·+ µλ
C,Nm

= αC

(14)

The array ws
(t),m
c corresponds to the following C equations

for each feature f :
x1,fµ

λ
1,1 + x2,fµ

λ
1,2 + · · ·+ xNm,fµ

λ
1,Nm

= β1,f

x1,fµ
λ
2,1 + x2,fµ

λ
2,2 + · · ·+ xNm,fµ

λ
2,Nm

= β2,f

. . .

x1,fµ
λ
C,1 + x2,fµ

λ
C,2 + · · ·+ xNm,fµ

λ
C,Nm

= βC,f

(15)
The server receives from each data owner m the αc value for

each cluster c, and the βc,f value for each cluster c and each
feature f . As membership degrees (µc,j) of objects to clusters
are computed according to the definition in Eq. 6, it turns out
that the only unknown variables are the coordinates xm

j,f . To
derive these coordinates for the objects stored in m, the server
needs to solve the overall system of equations, composed by
Eqs. 14 and 15, replacing the values of µc,j by using Eq. 6.
The number of unknown variables is Nm×F and the number
of equations is C +C × F . If the server knew the number of
objects Nm, it could derive the solution unless the number of
unknown variables was greater than the number of equations,
that is, if Nm > C×(F+1)

F . We highlight that the server does
not know Nm. Further, the condition does not appear too
restrictive since it requires that the number of objects is greater
than the number of clusters plus C/F . Therefore, we might
decide to let the data owner transmit the locally aggregated
data (Algorithm 2, line 7) only if Nm > C×(F+1)

F . Although
the server may be able to retrieve some data information from
the aggregated measurements submitted by each data owner,
it cannot determine the exact raw data values.

V. FEDERATED CLUSTERING OVER VERTICALLY
PARTITIONED DATA

Unlike the horizontal partitioning setting, in the vertical
partitioning setting the M participants have the same number
of samples N and mutually disjoint subsets of the features for
all samples. Let xm

j be the projection of the j-th sample of
the dataset onto the Fm features over the m-th participant;
the complete value of the j-th sample corresponds to the
concatenation of the projections available on all the data
owners: xj =

{
x1
j ,x

2
j , . . . ,x

M
j

}
. The dimension of this vector

is F =
∑M

m=1 F
m, i.e., the overall number of features.

The federated versions of CM and FCM clustering al-
gorithms are derived from the original versions of the two
algorithms by Lloyd [15] and Bezdek [16], respectively.

Similarly to the horizontal setting, Fig. 4 shows the se-
quence diagram of a generic round-based scheme for vertical
federated clustering, with the actions of the server and each
data owner. Since LLF-CM and LLF-FCM share the same
overall scheme, we provide a unique pseudocode for both as
reported in Algorithm 4.

The clustering parameters (number of clusters C, and fuzzi-
ness factor λ, for LLF-FCM) are initialized on the server.
Notably, the heuristic proposed in [32] for deciding the number
of clusters can be adapted to the vertical setting as the com-
putation of the SDB index on the server does not violate the
privacy of raw data. The number of clusters is shared with each
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N

Server

F

At each
round

Transmit configuration parameters

Generate projection of cluster centers over local dimensions

Transmit the squared distances

Compute the distance between each object and each center
by summing corresponding squared distances

Evaluate squared distances between objects and centers
over local dimensions

Transmit assigment/membership and stop flag

Update cluster centers projections

Data Owners
m = 1, ..., M

Evaluate assignment/membership and stop condition

Check stop flagCheck stop flag

Fig. 4. Sequence diagram summarizing the execution of the federated CM
and FCM algorithms over vertically partitioned data.

Algorithm 4 Vertical Federated c-means (LLF-CM) and
Fuzzy c-means (LLF-FCM). C: number of clusters, ε > 0:
tolerance value for the stop condition. T : maximum number
of rounds

Initialization stage
Server:

1: Transmit the number of clusters C to each data owner
2: stop flag = FALSE

Each data owner Pm:
3: Randomly generate the projections of the cluster centers over the features

defined on Pm: V(0),m
c =

{
v
(0),m
1 ,v

(0),m
2 , . . . ,v

(0),m
C

}
Execution stage

4: At each round t, with t starting from 0:
Centers update

Each data owner Pm:
5: if NOT stop flag AND t > 0 then
6: Evaluate v

(t),m
c for each cluster Γc (as per Eq. 16 in CM, as per

Eq. 17 in FCM)
7: end if

Cluster assignment
Each data owner Pm:

8: Evaluate d
(t),m
j,c =

∑Fm

f=1

(
xm
j,f − v

(t),m
c,f

)2
for each object j and

cluster Γc

9: Transmit the N × C matrix D(t),m to the server
Server:

10: Evaluate d
(t)
j,c =

√∑M
m=1 d

(t),m
j,c for each object j and cluster Γc

11: Evaluate assignment/membership for each object j and cluster Γc

(i.e., q(t)j and n
(t)
c in CM, U(t) =

[
µ
(t)
c,j

]
as per Eq. 18 in FCM)

12: if t ≥ 1 AND
(
||D(t) −D(t−1)||F < ε OR t > T

)
then

13: stop flag = TRUE
14: end if
15: Transmit object assignment/membership to clusters and stop flag to

each data owner
Termination

Each data owner Pm & Server:
16: if NOT stop flag then
17: Proceed with the next round (line 5)
18: end if
19: ⟨Termination⟩

data owner. At initialization time each data owner Pm ran-
domly generates the projections of the cluster centers onto the
components for Pm, V(0),m

c =
{
v
(0),m
1 ,v

(0),m
2 , . . . ,v

(0),m
C

}
.

The execution stage is subsequently iterated until the occur-
rence of the stop condition. At each round t (except the first
one) each data owner computes the new projections v

(t),m
c of

the centers v(t)
c based on the most recent information obtained

from the server. In the case of LLF-CM, v(t),m
c is evaluated

as the mean of the objects assigned to each cluster:

v(t),m
c =

∑
xm
j ∈Γc

xm
j

n
(t−1)
c

∀ c ∈ {1, . . . , C}. (16)

In the case of LLF-FCM, v
(t),m
c is evaluated based on the

current U(t) matrix:

v(t),m
c =

∑N
j=1

(
u
(t−1)
c,j

)λ
xm
j∑N

j=1

(
u
(t−1)
c,j

)λ ∀ c ∈ {1, . . . , C}. (17)

Then, each data owner Pm evaluates the squared distance
between each object xm

j and each cluster center v
(t)
c , i.e.,

the local contribution d
(t),m
j,c for the evaluation of the overall

distance of xj from v
(t)
c . The N ×C matrix D(t),m is sent to

the server. The server aggregates all the local contributions
to evaluate the overall distance of each object from each
cluster center. The execution proceeds by assessing the cluster
assignment/membership of each object. In LLF-CM, the server
assigns each object in the dataset to one cluster, according to
the nearest cluster center principle. Let q(t) be the vector that,
for each object xj , reports the cluster the object belongs to, and
n(t) be the vector that, for each cluster c, reports the number
of objects assigned to the cluster. Conversely, in LLF-FCM,
the server can compute the membership degree of each object
j to each cluster Γc as follows:

µ
(t)
c,j =

 C∑
l=1

(
d
(t)
j,c

d
(t)
j,l

) 2
λ−1

−1

∀ j, c. (18)

The termination condition we chose to implement for both
algorithms is the logical disjunction of two predicates, the
exceeded threshold T for the number of rounds (only for the
horizontal version), and the exceeded threshold ε of centroids’
displacement in adjacent rounds (evaluated as the Frobenius
norm of the difference of the distance matrices of centroids).

The server transmits object membership information (i.e.,
q(t) and n(t) in LLF-CM, U(t) in LLF-FCM), along with the
indication about termination, to the data owners for executing
the update of centers in the next round (if any).

A. Equivalence with the traditional algorithms executed on
the global dataset

The vertical variants of LLF-CM and LLF-FCM (algorithm
4) produce the same clusters that would be obtained by
the traditional CM and FCM, respectively, applied to the
global dataset Xsum , assuming the same initial cluster centers.
Indeed, the update step for cluster centers is exactly equivalent
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to the centralized case. As per the cluster assignment step,
the equivalence derives from the way the squared distance is
computed:

M∑
m=1

Fm∑
f=1

(
xm
j,f − v

(t),m
c,f

)2
=

F∑
f=1

(
xsum
j,f − v

(t)
c,f

)2
(19)

The left-hand side of Eq. 19 corresponds to the evaluation as
carried out in the vertical federated setting, whereas the right-
hand side represents the evaluation when all the object features
are directly available at the central server. The equivalence
holds only when all M parties provide their updates, i.e.
mutually disjoint subsets of the features for all the N samples.

Finally, the stop conditions in Algorithm 4 (line 12) can
be applied equivalently in the case of a centralized dataset.
We have proved that the vertical federated versions of the
algorithms are equivalent, and therefore lossless, compared to
the traditional versions applied to the global dataset.

B. Privacy analysis

The analysis of Algorithm 4 highlights that raw data are
not exposed while learning the cluster representation, thus
protecting the privacy of data owners. We point out that,
during the entire execution of both algorithms, no one knows
the complete set of coordinates of the cluster centers: such
knowledge is split among data owners, since each one holds
only the information relative to its local components. The
server, in particular, receives the M distance matrices D(t),m

from the data owners but it cannot infer the true coordinates of
the objects since it ignores the position of the cluster centers.

VI. EXPERIMENTAL ANALYSIS

It has been shown that the clustering results of the proposed
LLF-CM and LLF-FCM, and their traditional centralized ver-
sions, are the same (given the same initial centers). Thus, there
is no need for an experimental comparison of their outcomes.
Instead, it can be worth empirically investigating an aspect
peculiar to federated settings: due to different reasons (unre-
liable communication, client failure, temporal unavailability,
deliberate exclusion, etc.) some updates from clients to the
server may be missed. So, the effect of restricting the number
of clients that provide an update can be evaluated for different
fractions γ of the total number of clients.

Our experimental analysis has been mainly focused on
horizontal LLF-FCM for different reasons. First, the analysis
of results and convergence, depending on the fraction γ of
involved clients, is relevant only in the horizontal setting: in a
vertical partition, as each client holds a subset of features, the
absence of a single client’s contribution leads to a clustering
outcome necessarily different from what the original algorithm
obtains on the entire dataset. Second, we do not aim to
compare the performance of CM and FCM, and both our
LLF-CM and LLF-FCM share the same federation scheme
(see Fig. 3): due to space limitations, we chose to focus only
on LLF-FCM, because of the possibility of comparing our
approach with the recently proposed horizontal versions GDF-
FCM [31] and C2F-FCM [32]. For the sake of completeness,

we also report one experiment to show the equivalence of the
vertical LLF-FCM to the centralized one as the overall number
of clients varies. To the best of our knowledge, none of the
existing FL libraries support federated clustering. Thus, we
implemented the federated versions of CM and FCM from
scratch in Python.

A. Horizontal Federated FCM: Setup

We consider eight real-world and synthetic datasets with
available ground-truth labels, namely xclara, s-set1 and s-
set2 from the Clustering Benchmark repository2, waveform v1,
pendigits, rice, and statlog from the UCI Machine Learning
repository3 and phoneme from the Keel repository4 [40]. The
properties of each dataset are summarized in Table I.

TABLE I
DATASETS USED IN EXPERIMENTS

Dataset DOI Classes Samples Features

xclara (XC) 10.18637/jss.v001.i04 3 3000 2
s-set1 (S1) 10.1016/j.patcog.2005.09.012 15 5000 2
s-set2 (S2) 10.1016/j.patcog.2005.09.012 15 5000 2
pendigits (PE) 10.24432/C5MG6K 10 10992 16
waveform-v1 (WA) 10.24432/C5CS3C 3 5000 21
phoneme (PH) 10.1609/aaai.v33i01.33015117 2 5404 5
rice (RI) 10.24432/C5MW4Z 2 3810 7
statlog (ST) 10.24432/C55887 6 6435 16

The number of clusters C was set to match the number of
classes of each dataset; Furthermore, we chose the fuzziness
factor λ = 2. The convergence of the algorithms is an
important aspect to investigate: thus, we set the maximum
number of rounds T = 30 as the unique stopping condition, to
uncover the algorithms’ behaviour through successive rounds.

We considered a federated scenario with M = 20 clients
and data randomly and evenly distributed among the clients,
with roughly the same amount and distribution of instances
per client (i.i.d. setting). Moreover, to simulate scenarios with
partial contributions by clients, at the beginning of each round,
we randomly select only a fraction γ of the clients to contribute
to the global model update. In our experiments, we varied γ
in the set {0.25, 0.5, 0.75, 1}, with γ = 1 indicating that all
the clients are selected.

B. Horizontal Federated FCM: Evaluation strategy

We evaluated our horizontal LLF-FCM from multiple points
of view. First, we assessed the consistency of the clustering
results of the federated setting with those of the central-
ized setting, i.e., with the original FCM executed on the
global dataset, for different values of γ. This is accom-
plished (i) by evaluating the distance between Vfed and
Vsum , i.e., the cluster centers obtained by the federated
and the centralized approaches, respectively, and (ii) by
adopting a metric to compare the cluster assignment of ob-
jects between the two approaches. Specifically, let yfed =
[yfed,1, yfed,2, . . . , yfed,N ], yfed,j ∈ {1, . . . , C}, and ysum =

2https://github.com/deric/clustering-benchmark
3https://archive.ics.uci.edu/
4https://sci2s.ugr.es/keel/datasets.php
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[ysum,1, ysum,2, . . . , ysum,N ], ysum,j ∈ {1, . . . , C}, be the
vectors of such cluster assignment for each object, after de-
fuzzification. In the federated setting, such a vector is obtained,
purely for evaluation purposes, by concatenating the results
obtained locally by each data owner, including those that did
not contribute to the federated procedure but could still benefit
from the aggregated model. For the traditional centralized
FCM, we choose the implementation in the scikit-fuzzy library
5. The consistency between partitions has been evaluated
through the adjusted rand index (ARI), a normalized version
of the Rand Index, corrected by the expected agreements
obtained by chance. ARI is a widely accepted clustering
metric: ARI = 1 and ARI = 0 indicate respectively a perfect
and random agreement between the two clusterings.

Second, we applied ARI as an extrinsic evaluation metric
to compare yfed with the ground truth ytrue . Furthermore,
we adopted two popular intrinsic evaluation metrics, i.e., Xie
Beni (XB) [41] and Soft Davies Bouldin (SDB) [39], which
has been recently proposed as a fuzzy adaptation of the well-
known Davies Bouldin separation measure [42].

Third, we compared our approach with the state-of-art
approaches for Federated FCM [31], [32] discussed in Section
II, in two distinct experiments. In the first setting, we compared
our LLF-FCM with GDF-FCM [31] starting from random
prototype initialization, as reported in the original proposal
[31]. In the second setting we extended our LLF-FCM to
support careful seeding through a variant of k-means++, for
the sake of a fair comparison with C2F-FCM [32]. We used
the same configuration parameters for our algorithm and the
others: namely, the stopping condition (T = 30), the number
of clusters (matching the number of classes in each dataset),
and the fuzziness factor (λ = 2). In the implementation
of GDF-FCM, we followed the author’s suggestion for the
number of local iterations (local iter = 10); anyway, we
noticed that the default value of the learning rate α = 0.05
does not secure convergence for six of the eight datasets.
Thus, for a fair comparison, we tuned the learning rate to
a reasonably lower value (α = 0.005), ensuring convergence
for all datasets. The default parameter configuration has been
used for C2F-FCM [32].

C. Horizontal Federated FCM: Results

The analysis of the convergence with respect to the number
of rounds for our horizontal LLF-FCM and the state-of-art
GDF-FCM [31] are reported in the plots of Table II for each
dataset. We performed 10 runs of the algorithms by varying
the seed for the center initialization and data owners sampling.
For each execution, we adopted the same center initialization
for both the algorithms to compare. More specifically, we plot
the tolerance index, i.e. the Frobenius norm of the difference
of the cluster centers Vfed between two consecutive rounds,
averaged over the 10 executions.

In general, both approaches converge within the first 10
rounds. Interestingly, the trend of the tolerance index with
respect to the number of rounds is not particularly affected by
the fraction of clients involved in the federation. However, the

5https://pythonhosted.org/scikit-fuzzy/

index value converges to higher values for smaller γ values.
This is sensible because, when few participants are randomly
sampled at each round, the probability of selecting the same
participants in consecutive rounds is low and consequently the
centers are constantly being tweaked. The values of standard
deviation (shaded regions) of GDF-FCM are in general lower
compared to those of LLF-FCM. In the former, in fact, the
evolution of centers depends on the gradient of the cost
function and is modulated by the learning rate: a lower
learning rate generally leads to smaller updates of the centers,
leading to lower values of standard deviations.

Table III shows the numerical results of our experiments.
The measure of agreement with the ground-truth partition,
i.e., ARI(yfed(γ),ytrue), gives us a general insight of the
soundness of the clustering algorithm. It is worth recalling
that we are not concerned with demonstrating the suitability
of the FCM algorithm itself, but rather in validating the
federated approach; nonetheless, it can be observed that ARI
values of our LLF-FCM are always positive indicating that it
consistently outperforms random partitioning for each dataset.
Interestingly, LLF-FCM and GDF-FCM achieve very similar
figures of clustering quality. Furthermore, the ARI computed
with respect to the ground truth is not particularly affected by
the parameter γ: a reasonable partition is found even with a
low fraction of contributing participants.

The two horizontal federated FCM algorithms achieve very
similar results also in terms of intrinsic evaluation metrics.
The discrepancy between the two is significant only for the
pendigits dataset, where GDF-FCM achieves lower values of
XB and SDB compared to LLF-FCM. In these cases the
optimization strategy proposed in [31] is able to find clusters
that are more compact and separated from each other than
those discovered in our approach, even in the case of γ = 1
for which LLF-FCM coincides with the traditional FCM.

The values of ARI(yfed(γ),ysum) indicate the agreement
between the results of the federated and the traditional cen-
tralized FCM. Such an agreement is always very high with
ARI > 0.9 for all the datasets for both the approaches except
for GDF-FCM on the pendigits dataset (ARI = 0.79), in
which the algorithm evidently converges to a configuration
slightly different from the centralized one. The reason for such
disagreement arguably lies in the optimization strategy of C2F-
FCM: in fact, it exploits the traditional FCM optimization
at the client level and the gradient-descent optimization at
the server level (based on the weighted average of locally
computed gradients). These two optimizations may work in
opposite directions, especially in the case of non-i.i.d. datasets,
as we will highlight at the end of this subsection.

Also in the case of the agreement between the federated and
the centralized FCM, the ARI is quite robust to γ variations,
showing a slight increasing tendency when the fraction of
participants increases. For γ = 1, when all clients are involved,
our LLF-FCM always obtains ARI(yfed ,ysum) = 1, as
experimental evidence of the equivalence that we have also
demonstrated theoretically in Section IV-A. Although even
GDF-FCM can achieve ARI values close to 1 (and actually
equal to 1 for XC, PH and RI), an exact match is not
guaranteed and the approach cannot be defined lossless.
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TABLE II
HORIZONTAL FEDERATED FCM: AVERAGE VALUES OF TOLERANCE INDEXES. SHADED REGIONS REPRESENT THE STANDARD DEVIATIONS.
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XC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

S1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

S2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

PE

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.0

0.1

0.2

0.3

0.4

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.0

0.1

0.2

0.3

0.4

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

WA

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

PH

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

RI

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

ST

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.0

0.2

0.4

0.6

0.8

1.0

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
t (round)

0.0

0.2

0.4

0.6

0.8

1.0

||V
(t

+
1)

fe
d

V
(t) fe

d||
F

0.25 0.50 0.75 1.00

The consistency between federated and centralized ap-
proaches is also analyzed through the displacements of the
centers found in the two cases. The average displacements are
reported in the left part of Table III and plotted in Figure 5.
Notably, we consider the permutation of the centers in Vfed(γ)
that minimizes the norm ||Vfed(γ) − Vsum ||F . Coherently
with the increasing trend of ARI, the norm decreases as γ
grows, ultimately reaching the value 0 in our approach for
γ = 1. It is worth underlining that, although the federated
centers deviate from those in the centralized case, this has little
impact on the cluster assignment of objects, as indicated by
the rather small variations in ARI(yfed(γ),ytrue) values. The
displacement degree is comparable for the two approaches,
except for pendigits, where it is significantly higher for GDF-
FCM. We also verified that this does not depend on the maxi-

mum number of rounds: since the convergence on pendigits is
relatively slower than in the other datasets (see relevant figure
in Table II), we increased the number of rounds from 30 to
50, noticing that the final displacement of centers becomes
even more pronounced. As stated above, this suggests that the
algorithm converges to a configuration slightly different from
the one in the centralized scenario.

In general, the results show that both proposals yield reliable
and appropriate results for the clustering problem in the
i.i.d. horizontal federated settings, albeit pursuing different
approaches. Our LLF-FCM, however, guarantees to be loss-
less when all clients collaborate, whereas GDF-FCM slightly
deviates from the result of the original FCM. This is motivated
by the adoption of the gradient descent as the server-side
optimization strategy and by the related parameterization: it
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TABLE III
CLUSTERING RESULTS OF OUR LLF-FCM (TOP) AND GDF-FCM [31] (BOTTOM) WITH RESPECT TO INCREASING PERCENTAGES OF PARTICIPANTS TO
THE FEDERATION. AVERAGE VALUES OF: I) THE DIFFERENCE OF THE PROTOTYPES BETWEEN federated AND centralized VERSIONS, II) ARI BETWEEN

federated AND centralized VERSIONS, III) ARI BETWEEN federated AND ground truth PARTITIONS, IV) XB INDEX AND V) SDB INDEX. THE BEST VALUE
BETWEEN THE TWO APPROACHES IS HIGHLIGHTED IN BOLD.

||Vfed (γ)−Vsum ||F ARI(yfed (γ),ysum ) ARI(yfed (γ),ytrue) XB SDB
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XC 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.05 0.05 0.05 0.05 0.26 0.26 0.26 0.26
S1 0.14 0.10 0.01 0.00 0.96 0.98 1.00 1.00 0.91 0.90 0.90 0.90 0.73 0.83 0.89 0.94 0.74 0.76 0.78 0.79
S2 0.06 0.05 0.04 0.00 0.98 0.98 0.98 1.00 0.91 0.91 0.91 0.90 0.42 0.31 0.36 0.52 0.60 0.58 0.58 0.61
PE 0.12 0.07 0.05 0.00 0.96 0.98 0.98 1.00 0.48 0.48 0.48 0.48 11.26 9.95 8.93 8.79 1.48 1.41 1.39 1.37
WA 0.04 0.02 0.01 0.00 0.97 0.98 0.99 1.00 0.24 0.24 0.24 0.24 0.92 0.86 0.82 0.79 0.54 0.53 0.53 0.53
PH 0.01 0.01 0.00 0.00 0.98 0.99 0.99 1.00 0.15 0.15 0.15 0.15 0.97 0.97 0.97 0.97 0.21 0.21 0.21 0.21
RI 0.02 0.01 0.01 0.00 0.99 0.99 0.99 1.00 0.68 0.68 0.68 0.68 0.22 0.22 0.22 0.22 0.25 0.25 0.25 0.25
ST 0.06 0.03 0.02 0.00 0.98 0.99 0.99 1.00 0.53 0.53 0.53 0.53 0.30 0.31 0.31 0.31 0.78 0.78 0.78 0.78
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S1 0.16 0.16 0.18 0.18 0.96 0.96 0.95 0.95 0.90 0.89 0.89 0.89 0.95 1.01 1.02 0.94 0.83 0.85 0.86 0.84
S2 0.19 0.19 0.20 0.20 0.91 0.91 0.91 0.91 0.86 0.85 0.85 0.85 0.36 0.38 0.39 0.40 0.63 0.64 0.64 0.64
PE 0.82 0.80 0.81 0.79 0.79 0.79 0.79 0.79 0.48 0.48 0.45 0.48 4.25 3.99 3.95 3.87 0.88 0.87 0.87 0.87
WA 0.03 0.03 0.03 0.03 0.98 0.98 0.98 0.98 0.24 0.24 0.24 0.24 0.83 0.82 0.82 0.82 0.52 0.52 0.52 0.52
PH 0.01 0.01 0.00 0.00 0.97 0.98 0.99 1.00 0.15 0.15 0.15 0.15 0.94 0.97 0.96 0.96 0.21 0.21 0.21 0.21
RI 0.02 0.01 0.01 0.00 0.99 0.99 0.99 1.00 0.68 0.68 0.68 0.68 0.22 0.22 0.22 0.22 0.25 0.25 0.25 0.25
ST 0.03 0.02 0.02 0.02 0.98 0.99 0.99 0.99 0.53 0.53 0.53 0.53 0.31 0.31 0.32 0.31 0.78 0.78 0.78 0.78

is clear that the convergence differs from the original one
depending on the additional parameters α, i.e., the learning
rate, and number of local iterations.

The gradient-descent strategy of GDF-FCM, however, is not
effective in the non-i.i.d. setting, due to the interplay between
the server-level and the client-level optimizations. To analyse
this aspect, we also considered the case of label imbalance, in
which data are partitioned following a probability distribution
whereby the classes are represented differently in different
clients. Following the relevant literature [43], we exploited the
Dirichlet distribution to allocate a proportion of the samples of
each class k, i.e., pk ∼ Dir(β): the smaller the concentration
parameter β, the more unbalanced the distribution. In our
experiments, we set β = 0.5 as in [43]. In Table IV, we report
the values of ARI(yfed(γ),ytrue) as a measure of agreement
with the ground-truth partition for γ = 1.

TABLE IV
ARI BETWEEN federated AND ground truth PARTITIONS WITH γ = 1 IN

THE NON-I.I.D. SETTING.

XC S1 S2 PE WA PH RI ST

LLF-FCM (ours) 0.99 0.90 0.90 0.48 0.24 0.15 0.68 0.53
GDF-FCM [31] 1.00 0.83 0.74 0.41 0.27 0.13 0.32 0.40

Results suggest that the clustering results obtained with
GDF-FCM are significantly impacted by heterogeneity in data
distribution. For all datasets except xclara and waveform the
values of ARI are lower than those reported in Table III
and than those obtained with our LLF-FCM. Notably, our
approach achieves the exact same results as the i.i.d. case: the
equivalence with the traditional algorithm does not depend on
the distribution of data across clients.

Finally, from a communication point of view, our LLF-FCM
is slightly more costly compared to GDF-FCM [31] which
requires that, at each round, the clients upload the gradient
matrix (C×F ) to the server and download the centroid matrix
(C × F ) from the server. In LLF-FCM the download cost is
the same, but each client needs to transmit to the server both

WSm (C × F ), i.e. the sum of the data objects, weighted by
the membership degree of the objects to cluster c, and um,
i.e. the array with C elements, where the c-th element is the
sum of the membership degrees of the objects to cluster c.

Further data and charts relative to the experimental results
are available as Supplementary Material.

D. Horizontal Federated FCM with Careful Seeding

In the previous experimental section, we compared our LLF-
FCM with GDF-FCM with a random selection of the initial
prototypes [31]. The CM and FCM algorithms, however, are
known to be sensitive to initialization, with the risk of getting
stuck in local sub-optima. As described in Section II, C2F-
FCM [32] leverages a careful seeding policy based on k-
means++, as ordinarily done in many popular library imple-
mentations of k-means6: for the sake of a fair comparison, we
introduced a careful seeding also in our LLF-FCM. In partic-
ular, at the beginning, each client generates a set of candidate
centers and shares them with the server. The server executes
the CM procedure on the overall candidate centers, getting
to the C centers for initializing the FCM procedure (hence
executed as described in Section IV). The candidate centers
evaluation procedure on each client is based on k-means++
[33], suitably adapted to avoid the transmission of raw data:
whenever a point of the dataset is selected as candidate center,
the average of its 5 nearest neighbours is considered rather
than the point itself. Clearly, this procedure generally leads to
initial centers different from those obtained by applying the
k-means++ algorithm in the centralized setting.

Table V reports the results. The ARI values (w.r.t. ground
truth partition) obtained by our LLF-FCM after careful seeding
are comparable to, or higher than, those reported in Table
III (major gain is observed for s-set1 and pendigits). Our
LLF-FCM and C2F-FCM [32] achieve quite similar results,
in terms of agreement with the ground truth partition and

6e.g. in Scikit-learn https://scikit-learn.org/ and Matlab https://mathworks.
com/ in “Statistics and Machine Learning Toolbox”
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Fig. 5. Average distance between cluster centers computed by the Horizontal Federated FCM and the traditional FCM on the global merged dataset Xsum.
Our LLF-FCM (black) is compared with GDF-FCM [31] (red). Best viewed in color.

TABLE V
CLUSTERING RESULTS OF OUR LLF-FCM (TOP) AND C2F-FCM [32] (BOTTOM) WITH RESPECT TO INCREASING PERCENTAGES OF PARTICIPANTS TO

THE FEDERATION, BOTH EMPLOYING CAREFUL SEEDING BASED ON k-MEANS++. AVERAGE VALUES OF: I) THE DIFFERENCE OF THE PROTOTYPES
BETWEEN federated AND centralized VERSIONS, II) ARI BETWEEN federated AND centralized VERSIONS, III) ARI BETWEEN federated AND ground truth

PARTITIONS, IV) XB INDEX AND V) SDB INDEX. THE BEST VALUE BETWEEN THE TWO APPROACHES IS HIGHLIGHTED IN BOLD.

||Vfed (γ)−Vsum ||F ARI(yfed (γ),ysum ) ARI(yfed (γ),ytrue) XB SDB

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
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XC 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.05 0.05 0.05 0.05 0.26 0.26 0.26 0.26
S1 0.05 0.08 0.04 0.04 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.04 0.06 0.04 0.04 0.54 0.55 0.54 0.54
S2 0.10 0.10 0.05 0.09 0.98 0.98 0.99 0.98 0.95 0.95 0.96 0.95 0.12 0.14 0.07 0.13 0.51 0.52 0.49 0.51
PE 0.37 0.39 0.40 0.39 0.91 0.90 0.90 0.91 0.56 0.56 0.56 0.57 2.95 2.04 1.68 1.43 0.80 0.76 0.73 0.72
WA 0.03 0.02 0.01 0.00 0.99 0.99 1.00 1.00 0.24 0.24 0.24 0.24 0.83 0.85 0.85 0.85 0.53 0.53 0.53 0.53
PH 0.01 0.01 0.00 0.00 0.98 0.99 0.99 1.00 0.15 0.15 0.15 0.15 1.00 0.97 0.97 0.97 0.22 0.21 0.21 0.21
RI 0.02 0.01 0.01 0.00 0.99 0.99 1.00 1.00 0.68 0.68 0.68 0.68 0.21 0.22 0.22 0.22 0.25 0.25 0.25 0.25
ST 0.06 0.04 0.02 0.01 0.98 0.98 0.99 0.99 0.53 0.53 0.53 0.53 0.31 0.32 0.31 0.31 0.78 0.78 0.78 0.78

C
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M
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XC 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.05 0.05 0.05 0.05 0.26 0.26 0.26 0.26
S1 0.17 0.25 0.17 0.13 0.97 0.95 0.96 0.97 0.97 0.94 0.96 0.97 0.16 0.31 0.32 0.27 0.58 0.61 0.60 0.59
S2 0.19 0.24 0.23 0.19 0.95 0.94 0.94 0.94 0.92 0.92 0.92 0.92 0.13 0.13 0.16 0.14 0.53 0.53 0.53 0.53
PE 1.41 1.04 0.73 0.72 0.84 0.86 0.88 0.89 0.54 0.54 0.55 0.55 1.51 1.22 1.55 1.26 0.78 0.72 0.70 0.69
WA 0.03 0.02 0.01 0.01 0.98 0.99 0.99 0.99 0.24 0.24 0.24 0.24 0.85 0.84 0.84 0.83 0.53 0.53 0.53 0.53
PH 0.02 0.01 0.01 0.00 0.96 0.97 0.98 0.99 0.15 0.15 0.15 0.15 1.00 1.00 0.98 0.97 0.21 0.21 0.21 0.21
RI 0.02 0.01 0.01 0.00 0.98 0.99 0.99 1.00 0.68 0.68 0.68 0.68 0.22 0.21 0.22 0.22 0.25 0.25 0.25 0.25
ST 0.10 0.06 0.04 0.02 0.96 0.97 0.98 0.99 0.54 0.53 0.53 0.53 0.31 0.32 0.33 0.33 0.78 0.79 0.79 0.79

in terms of the internal metrics XB and SDB. Furthermore,
as already noted for the random initialization, ARI values do
not vary particularly with the number of participating clients.
Regarding the ARIs between corresponding partitions and the
displacements between centres obtained by the federated and
centralized approaches, respectively, our LLF-FCM leads to
a clustering that is systematically more consistent with the
centralized one. It should be noted, however, that the feder-
ated initialization procedure is not equivalent to the adoption
of k-means++ in the centralized setting, and therefore the
equivalence of the resulting partitions may be lost. For half
of the datasets it holds ARI(yfed ,ysum) ̸= 1, even when all
clients are involved (γ = 1). Notably, C2F-FCM introduces a
higher computational complexity than LLF-FCM, as it features
two optimization procedures at each round (FCM, locally, and
CM at the server side). At the same time, however, the cost
in terms of communication is slightly reduced because only
cluster centers are shared from each client to the server and
vice versa.

E. Vertical Federated FCM

Replicating the analysis carried out for the horizontal case
in the vertical setting would be pointless: indeed, varying the
fraction of clients would entail changing the feature space
where the samples are defined, and thus the convergence anal-
ysis of the federated algorithm becomes not very meaningful.
However, to experimentally validate the theoretical evidence of
equivalence with the centralized setting, we report the results
obtained with our Vertical LLF-FCM on the pendigits dataset
as the overall number of clients varies. Such a dataset has been
selected due to the relatively high dimensionality (16 features),
which enables different vertical data partitioning schemes: 16
clients each with 1 feature, 8 clients each with 2 features,
4 clients each with 4 features, and 2 clients each with 8
features. We also considered an uneven split, with 5 clients
having 1, 2, 3, 4, and 6 features, respectively. Figure 6 shows
the convergence analysis, measured as the Frobenius norm of
the difference in consecutive rounds of the distance matrices
D(t+1) and D(t), in which the element dj,c represents the
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Fig. 6. Vertical LLF-FCM: Average values of Frobenius norm of the
difference in the distance matrix between consecutive rounds for different
data partitioning schemes on the pendigits dataset. Shaded regions represent
the standard deviations.

distance between object j and center c.
Unsurprisingly, all curves show exactly the same pattern,

as can be clearly seen in the zoomed-in region: when all
the clients contribute to the FL process, our vertical LLF-
FCM is lossless compared to the traditional centralized FCM.
Furthermore, we verified that all the data partitioning schemes
achieve the same final clustering result as the centralized case,
with ARI(yfed(γ),ytrue) = 0.48 equal to that obtained by
Horizontal LLF-FCM with γ = 1 for the same dataset.

VII. CONCLUSION

In this paper, we have proposed federated versions of the
c-means (CM) and fuzzy CM (FCM) clustering algorithms
over horizontally and vertically partitioned datasets. For both
algorithms, the optimization procedure is based on alternately
updating the assignment of objects to clusters and cluster
centers. We have shown that these steps can still be carried
out in the federated setting, where multiple data owners wish
to collaboratively evaluate a global clustering model without
disclosing their private raw data, but sharing only locally
aggregated statistics with an orchestrating central server. We
have proved that our federated versions achieve exactly the
same results as the traditional clustering algorithms when
applied to the union of the local datasets. Our versions are
applicable in scenarios with relaxed privacy requirements: we
thoroughly analyzed privacy issues in the case of an honest-
but-curious central server, which, although adhering to the
agreed federated protocol, can try to retrieve private raw data
from the updates communicated by the data owners.

The effectiveness of the proposed federated versions is
presented through an extensive experimental analysis based
on FCM: besides experimentally verifying equivalence with
the centralized algorithm for both data partitioning schemes,
we deepened the analysis of horizontal federated FCM conver-
gence as the fraction of clients participating in the federation
varies. Results are evaluated on several synthetic and real-
world datasets and compared with those obtained by two
recently proposed horizontal federated FCM approaches. Ex-
perimental analysis yields several insights: first, our approach
converges in a few FL rounds. Second, with random ini-
tialization, our federated FCM and the gradient-descent one
achieve very similar results in terms of ARI, even if only ours
proves to be lossless and robust to the non-i.i.d. setting. This is
accomplished at a slightly additional communication cost, in
comparison with the gradient-descent approach. With careful
seeding, although the exact equivalence with the centralized

setting is lost, clustering accuracy is improved. Third, our
horizontal federated FCM is shown to be robust concerning the
fraction of clients participating in the federation in the case of
independent and identically distributed (i.i.d.) datasets. This is
testified by the high agreement between the partition obtained
with federated clustering and the centralized one (ARI > 0.9)
and by the small displacements between corresponding cluster
centers. Despite the wide scope of the presented study on
federated clustering, it is possible to identify two interesting
further developments, which we intend to address in future
works. First, we would like to study federated versions of other
popular clustering algorithms (for instance, the DBSCAN
algorithm). Second, the study presented in this paper can
be extended by relaxing the assumption that the datasets are
statically available over the several parties, but rather produced
as data streams: indeed, ad-hoc approaches should be devised
for collaboratively updating the federated clustering based on
newly collected data.
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CORCUERA BÁRCENA et al.: PRIVACY-PRESERVING CLUSTERING OVER HORIZONTALLY AND VERTICALLY PARTITIONED DATA 15

[12] J. Han, M. Kamber et al., “3 - data preprocessing,” in Data Mining,
3rd ed., ser. The Morgan Kaufmann Series in Data Management Sys-
tems. Boston: Morgan Kaufmann, 2012, pp. 83–124.

[13] J. M. C. Sousa and U. Kaymak, Fuzzy decision making in modeling and
control. World Scientific, 2002, vol. 27.

[14] E. Commission, C. Directorate-General for Communications Networks
et al., Ethics guidelines for trustworthy AI. Publications Office, 2019.

[15] S. Lloyd, “Least squares quantization in PCM,” IEEE T Inform Theory,
vol. 28, no. 2, pp. 129–137, 1982.

[16] J. C. Bezdek, “Fuzzy mathematics in pattern classification,” Ph. D.
Dissertation, Applied Mathematics, Cornell University, 1973.
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